
www.princexml.com
Prince - Personal Edition
This document was created with Prince, a great way of getting web content onto paper.

MongoDB Ruby
Driver

Getting started

Once the MongoDB Ruby driver is in-
stalled, we can begin to use it to connect
to a Mongo database. To create a connec-
tion using localhost, we simply specify the
driver as a dependency. Assuming we're
using the default port we can then connect
as follows:

require 'mongo'

where 'learning-mongo' is the name of our database:
db = Connection.new.db('learning-mongo');

We probably also want to place some data
into 'learning-mongo'. It could be as
simple as a note, so why don't we go
ahead and begin a notes collection?:

ruby notes =
db.collection('notes') Something
interesting worth noting is that at this
point, we haven't actually created the
database nor the collection we're referen-
cing above.

Neither of these items exist in Mongo
(just yet) but as we're working with a new
database but they will once we insert
some real data.

A new note could be defined using key/
value pairs as follows and then inserted
into 'learning-mongo' using collec-
tion.insert():

4/296

our_note = { :text => 'Remember the milk', :remindInterval => 'weekly'}
note_id = notes.insert(our_note)

What is returned from inserting a note in-
to the notes collection is an ObjectId
reference for the note from Mongo. This is
useful as we can re-use it to locate the
same document in our database.

note = notes.find(:id => note_id).first

This can also be used in conjunction with
Mongo's collection.update() meth-
od and query operators (i.e $set) to re-
place fields in an existing document.

We might update an entire document as
follows:

note = notes.find(:id => note_id).first
note[:text] = 'Remember the bread'
notes.update({ :_id => note_id }, note)

5/296

http://www.mongodb.org/display/DOCS/Updating

or using $set, update an existing docu-
ment without overwriting the entire ob-
ject as like this:

notes.update({ :_id => note_id }, '$set' => { :text = > 'Remember the bread' })

Useful to know: Almost each MongoDB
document has an _id field as it's first at-
tribute. This can normally be of any type,
however a special BSON datatype is
provided for object ids. It's a 12-byte bin-
ary value that has a high probability of be-
ing unique when allocated.

Note: Whilst we opted for the MongoDB
Ruby Driver for this stack, you may also
be interested in DataMapper - a solu-
tion which allows us to use the same API
to talk to a number of different datastores.
This works well for both relational and
non-relational databases and more in-
formation is available on the official

6/296

project page. Sinatra: The Book also con-
tains a brief tutorial on DataMapper for
anyone interested in exploring it further.

7/296

http://datamapper.org/why.html
http://sinatra-book.gittr.com/#datamapper

Practical
We're going to use Sinatra in a similar
manner to how we used Express in the
last chapter. It will power a RESTful API
supporting CRUD operations. Together
with a MongoDB data store, this will allow
us to easily persist data (todo items)
whilst ensuring they are stored in a data-
base. If you've read the previous chapter
or have gone through any of the Todo ex-
amples covered so far, you will find this
surprisingly straight-forward.

Remember that the default Todo example
included with Backbone.js already per-
sists data, although it does this via a loc-
alStorage adapter. Luckily there aren't a
great deal of changes needed to switch
over to using our Sinatra-based API. Let's
briefly review the code that will be

powering the CRUD operations for this
sections practical, as we go course won't
be starting off with a near-complete base
for most of our real world applications.

Installing The Prerequisites

Ruby

If using OSX or Linux, Ruby may be one
of a number of open-source packages that
come pre-installed and you can skip over
to the next paragraph. In case you would
like to check if check if you have Ruby in-
stalled, open up the terminal prompt and
type:

$ ruby -v

The output of this will either be the ver-
sion of Ruby installed or an error com-
plaining that Ruby wasn't found.

9/296

Should you need to install Ruby manually
(e.g for an operating system such as Win-
dows), you can do so by downloading the
latest version from http://www.ruby-
lang.org/en/downloads/. Alternatively,
(RVM)[http://beginrescueend.com/rvm/
install/] (Ruby Version Manager) is a
command-line tool that allows you to eas-
ily install and manage multiple ruby en-
vironments with ease.

Ruby Gems

Next, we will need to install Ruby Gems.
Gems are a standard way to package pro-
grams or libraries written in Ruby and
with Ruby Gems it's possible to install ad-
ditional dependencies for Ruby applica-
tions very easily.

On OSX, Linux or Windows go to ht-
tp://rubyforge.org/projects/rubygems

10/296

http://rubyforge.org/projects/rubygems
http://rubyforge.org/projects/rubygems

and download the latest version of Ruby
Gems. Once downloaded, open up a ter-
minal, navigate to the folder where this
resides and enter:

$> tar xzvf rubygems.tgz
$> cd rubygems
$> sudo ruby setup.rb

There will likely be a version number in-
cluded in your download and you should
make sure to include this when tying the
above. Finally, a symlink (symbolic link)
to tie everything togther should be fun as
follows:

$ sudo ln -s /usr/bin/gem1.8.17
/usr/bin/gem

To check that Ruby Gems has been cor-
rectly installed, type the following into
your terminal:

11/296

$ gem -v

Sinatra

With Ruby Gems setup, we can now easily
install Sinatra. For Linux or OSX type this
in your terminal:

$ sudo gem install sinatra

and if you're on Windows, enter the fol-
lowing at a command prompt:

c:\\ > gem install sinatra

Haml

As with other DSLs and frameworks,
Sinatra supports a wide range of different
templating engines. ERB is the one most
often recommended by the Sinatra camp,
however as a part of this chapter, we're

12/296

http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/classes/ERB.html

going to explore the use of Haml to define
our application templates.

Haml stands for HTML Abstractional
Markup Language and is a lightweight
markup language abstraction that can be
used to describe HTML without the need
to use traditional markup language se-
mantics (such as opening and closing
tags).

Installing Haml can be done in just a line
using Ruby Gems as follows:

$ gem install haml

MongoDB

If you haven't already downloaded and in-
stalled MongoDB from an earlier chapter,
please do so now. With Ruby Gems,
Mongo can be installed in just one line:

13/296

http://haml.hamptoncatlin.com/
http://www.mongodb.org/downloads

$ gem install mongodb

We now require two further steps to get
everything up and running.

1.Data directories

MongoDB stores data in the bin/data/db
folder but won't actually create this direct-
ory for you. Navigate to where you've
downloaded and extracted Mongo and
run the following from terminal:

sudo mkdir -p /data/db/
sudo chown `id -u` /data/db

2.Running and connecting to your server

Once this is done, open up two terminal
windows.

14/296

In the first, cd to your MongoDB bin dir-
ectory or type in the complete path to it.
You'll need to start mongod.

$./bin/mongod

Finally, in the second terminal, start the
mongo shell which will connect up to loc-
alhost by default.

$./bin/mongo

MongoDB Ruby Driver

As we'll be using the MongoDB Ruby
Driver, we'll also require the following
gems:

The gem for the driver itself:

$ gem install mongo

15/296

https://github.com/mongodb/mongo-ruby-driver
https://github.com/mongodb/mongo-ruby-driver

and the driver's other prerequisite, bson:

$ gem install bson_ext

This is basically a collection of extensions
used to increase serialization speed.

That's it for our prerequisites!.

Tutorial

To get started, let's get a local copy of the
practical application working on our
system.

Application Files

Clone this repository and navigate to
/practicals/stacks/option3. Now
run the following lines at the terminal:

16/296

http://github.com/addyosmani/backbone-fundamentals

ruby app.rb

Finally, navigate to ht-
tp://localhost:4567/todo to see
the application running successfully.

Note: The Haml layout files for Option 3
can be found in the /views folder.

The directory structure for our practical
application is as follows:

--public
----css
----img
----js
-----script.js
----test
--views
app.rb

17/296

The public directory contains the scripts
and stylesheets for our application and
uses HTML5 Boilerplate as a base. You
can find the Models, Views and Collec-
tions for this section within public/js/
scripts.js (however, this can of course
be expanded into sub-directories for each
component if desired).

scripts.js contains the following
Backbone component definitions:

--Models
----Todo

--Collections
----TodoList

--Views
---TodoView
---AppView

18/296

app.rb is the small Sinatra application
that powers our backend API.

Lastly, the views directory hosts the
Haml source files for our application's in-
dex and templates, both of which are com-
piled to standard HTML markup at
runtime.

These can be viewed along with other
note-worthy snippets of code from the ap-
plication below.

Backbone

Views

In our main application view (AppView),
we want to load any previously stored
Todo items in our Mongo database when
the view initializes. This is done below
with the line Todos.fetch() in the

19/296

initialize() method where we also
bind to the relevant events on the Todos
collection for when items are added or
changed.

// Our overall **AppView** is the top-level piece of UI.
var AppView = Backbone.View.extend({

// Instead of generating a new element, bind to the existing skeleton of
// the App already present in the HTML.
el: $("#todoapp"),

// Our template for the line of statistics at the bottom of the app.
statsTemplate: _.template($('#stats-template').html()),
// Delegated events for creating new items, and clearing completed ones.
events: {

"keypress #new-todo": "createOnEnter",
"keyup #new-todo": "showTooltip",
"click .todo-clear a": "clearCompleted"

},

20/296

// At initialization
initialize: function() {

this.input = this.$("#new-todo");
Todos.on('add', this.addOne, this);
Todos.on('reset', this.addAll, this);
Todos.on('all', this.render, this);
Todos.fetch();

},

// Re-rendering the App just means refreshing the statistics -- the rest
// of the app doesn't change.
render: function() {

this.$('#todo-stats').html(this.statsTemplate({
total: Todos.length,
done:

….

21/296

Collections

In the TodoList collection below, we've set
the url property to point to /api/todos
to reference the collection's location on
the server. When we attempt to access this
from our Sinatra-backed API, it should re-
turn a list of all the Todo items that have
been previously stored in Mongo.

For the sake of thoroughness, our API will
also support returning the data for a spe-
cific Todo item via /api/todos/
itemID. We'll take a look at this again
when writing the Ruby code powering our
backend.

// Todo Collection

var TodoList = Backbone.Collection.extend({
// Reference to this collection's model.

22/296

model: Todo,

// Save all of the todo items under the `"todos"` namespace.
// localStorage: new Store("todos"),
url: '/api/todos',

// Filter down the list of all todo items that are finished.
done: function() {

return this.filter(function(todo){ return todo.get('done'); });
},

// Filter down the list to only todo items that are still not finished.
remaining: function() {

return this.without.apply(this, this.done());
},

// We keep the Todos in sequential order, despite being saved by unordered
// GUID in the database. This generates the next order number for new items.
nextOrder: function() {

if (!this.length) return 1;
return this.last().get('order') + 1;

},

23/296

// Todos are sorted by their original insertion order.
comparator: function(todo) {

return todo.get('order');
}

});

Model

The model for our Todo application re-
mains largely unchanged from the ver-
sions previously covered in this book. It is
however worth noting that calling the
function model.url() within the below
would return the relative URL where a
specific Todo item could be located on the
server.

// Our basic **Todo** model has `text`, `order`, and `done` attributes.
var Todo = Backbone.Model.extend({

idAttribute: "_id",

24/296

// Default attributes for a todo item.
defaults: function() {

return {
done: false,
order: Todos.nextOrder()

};
},

// Toggle the `done` state of this todo item.
toggle: function() {

this.save({done: !this.get("done")});
}

});

Ruby/Sinatra

Now that we've defined our main models,
views and collections let's get the CRUD
operations required by our Backbone ap-
plication supported in our Sinatra API.

25/296

We want to make sure that for any opera-
tions changing underlying data (create,
update, delete) that our Mongo data store
correctly reflects these.

app.rb

For app.rb, we first define the depend-
encies required by our application. These
include Sinatra, Ruby Gems, the Mon-
goDB Ruby driver and the JSON gem.

require 'rubygems'
require 'sinatra'
require 'mongo'
require 'json'

Next, we create a new connection to
Mongo, specifying any custom configura-
tion desired. If running a multi-threaded
application, setting the 'pool_size' allows
us to specify a maximum pool size and

26/296

'timeout' a maximum timeout for waiting
for old connections to be released to the
pool.

DB = Mongo::Connection.new.db("mydb", :pool_size => 5, :timeout => 5)

Finally we define the routes to be suppor-
ted by our API. Note that in the first two
blocks - one for our application root (/)
and the other for our todo items route
/todo - we're using Haml for template
rendering.

class TodoApp < Sinatra::Base

get '/' do
haml :index, :attr_wrapper => '"', :locals => {:title => 'hello'}

end
get '/todo' do

haml :todo, :attr_wrapper => '"', :locals => {:title => 'Our Sinatra Todo app'}
end

27/296

haml :index instructs Sinatra to use the
views/index.haml for the application
index, whilst `attr_wrapper is simply
defining the values to be used for any local
variables defined inside the template. This
similarly applies Todo items with the tem-
plate `views/todo.haml'.

The rest of our routes make use of the
params hash and a number of useful
helper methods included with the Mon-
goDB Ruby driver. For more details on
these, please read the comments I've
made inline below:

get '/api/:thing' do
query a collection :thing, convert the output to an array, map the _id
to a string representation of the object's _id and finally output to JSON
DB.collection(params[:thing]).find.to_a.map{|t| from_bson_id(t)}.to_json

end
get '/api/:thing/:id' do

28/296

get the first document with the id :id in the collection :thing as a single document (rather
than a Cursor, the standard output) using find_one(). Our bson utilities assist with
ID conversion and the final output returned is also JSON
from_bson_id(DB.collection(params[:thing]).find_one(to_bson_id(params[:id]))).to_json

end
post '/api/:thing' do

parse the post body of the content being posted, convert to a string, insert into
the collection #thing and return the ObjectId as a string for reference
oid = DB.collection(params[:thing]).insert(JSON.parse(request.body.read.to_s))
"{\"_id\": \"#{oid.to_s}\"}"

end
delete '/api/:thing/:id' do

remove the item with id :id from the collection :thing, based on the bson
representation of the object id
DB.collection(params[:thing]).remove('_id' => to_bson_id(params[:id]))

end
put '/api/:thing/:id' do

collection.update() when used with $set (as covered earlier) allows us to set single values
in this case, the put request body is converted to a string, rejecting keys with the name '_id' for security purposes

29/296

DB.collection(params[:thing]).update({'_id' => to_bson_id(params[:id])}, {'$set' => JSON.parse(request.body.read.to_s).reject{|k,v| k == '_id'}})
end
utilities for generating/converting MongoDB ObjectIds
def to_bson_id(id) BSON::ObjectId.from_string(id) end
def from_bson_id(obj) obj.merge({'_id' => obj['_id'].to_s}) end
end
That's it. The above is extremely lean for
an entire API, but does allow us to read
and write data to support the functionality
required by our client-side application.

For more on what MongoDB and the
MongoDB Ruby driver are capable of,
please do feel free to read their document-
ation for more information.

If you're a developer wishing to take this
example further, why not try to add some
additional capabilities to the service:

30/296

• Validation: improved validation of
data in the API. What more could
be done to ensure data
sanitization?

• Search: search or filter down Todo
items based on a set of keywords
or within a certain date range

• Pagination: only return the Nth
number of Todo items or items
from a start and end-point

Haml/Templates

Finally, we move on to the Haml files that
define our application index (layout.haml)
and the template for a specific Todo item
(todo.haml). Both of these are largely self-
explanatory, but it's useful to see the dif-
ferences between the Jade approach we
reviewed in the last chapter vs. using
Haml for this implementation.

31/296

Note: In our Haml snippets below, the
forward slash character is used to indicate
a comment. When this character is placed
at the beginning of a line, it wraps all of
the text after it into a HTML comment. e.g

/ These are templates

compiles to:

<!-- These are templates -->

index.haml

%head
%meta{'charset' => 'utf-8'}/
%title=title
%meta{'name' => 'description', 'content' => ''}/
%meta{'name' => 'author', 'content' => ''}/
%meta{'name' => 'viewport', 'content' => 'width=device-width,initial-scale=1'}/

/ CSS concatenated and minified via ant build script

32/296

%link{'rel' => 'stylesheet', 'href' => 'css/style.css'}/
/ end CSS

%script{'src' => 'js/libs/modernizr.min.js'}
%body

%div#container
%header
%div#main

= yield
%footer

/! end of #container

%script{'src' => 'http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js'}

/ scripts concatenated and minified via ant build script
%script{'src' => 'js/mylibs/underscore.js'}
%script{'src' => 'js/mylibs/backbone.js'}
%script{'defer' => true, 'src' => 'js/plugins.js'}
%script{'defer' => true, 'src' => 'js/script.js'}
/ end scripts

33/296

todo.haml

%div#todoapp
%div.title

%h1
Todos
%div.content

%div#create-todo
%input#new-todo{"placeholder" => "What needs to be done?", "type" => "text"}/
%span.ui-tooltip-top{"style" => "display:none;"} Press Enter to save this task

%div#todos
%ul#todo-list

%div#todo-stats

/ Templates

%script#item-template{"type" => "text/template"}
<div class="todo <%= done ? 'done' : '' %>">
%div.display

<input class="check" type="checkbox" <%= done ? 'checked="checked"' : '' %> />
%div.todo-text
%span#todo-destroy

34/296

%div.edit
%input.todo-input{"type" => "text", "value" =>""}/

</div>
%script#stats-template{"type" => "text/template"}

<% if (total) { %>
%span.todo-count

%span.number <%= remaining %>
%span.word <%= remaining == 1 ? 'item' : 'items' %>
left.

<% } %>
<% if (done) { %>
%span.todo-clear

%a{"href" => "#"}
Clear
%span.number-done <%= done %>
completed
%span.word-done <%= done == 1 ? 'item' : 'items' %>

<% } %>

35/296

Conclusions

In this chapter, we looked at creating a
Backbone application backed by an API
powered by Ruby, Sinatra, Haml, Mon-
goDB and the MongoDB driver. I person-
ally found developing APIs with Sinatra a
relatively painless experience and one
which I felt was on-par with the effort re-
quired for the Node/Express implementa-
tion of the same application.

This section is by no means the most com-
prehensive guide on building complex
apps using all of the items in this particu-
lar stack. I do however hope it was an in-
troduction sufficient enough to help you
decide on what stack to try out for your
next project.

36/296

Advanced

Modular JavaScript

When we say an application is modular,
we generally mean it's composed of a set
of highly decoupled, distinct pieces of
functionality stored in modules. As you
probably know, loose coupling facilitates
easier maintainability of apps by remov-
ing dependencies where possible. When
this is implemented efficiently, its quite
easy to see how changes to one part of a
system may affect another.

Unlike some more traditional program-
ming languages however, the current iter-
ation of JavaScript (ECMA-262) doesn't
provide developers with the means to im-
port such modules of code in a clean, or-
ganized manner. It's one of the concerns

37/296

with specifications that haven't required
great thought until more recent years
where the need for more organized
JavaScript applications became apparent.

Instead, developers at present are left to
fall back on variations of the module or
object literal patterns. With many of
these, module scripts are strung together
in the DOM with namespaces being de-
scribed by a single global object where it's
still possible to incur naming collisions in
your architecture. There's also no clean
way to handle dependency management
without some manual effort or third party
tools.

Whilst native solutions to these problems
will be arriving in ES Harmony, the good
news is that writing modular JavaScript
has never been easier and you can start
doing it today.

38/296

In this next part of the book, we're going
to look at how to use AMD modules and
RequireJS for cleanly wrapping units of
code in your application into manageable
modules.

Organizing modules
with RequireJS and

AMD

In case you haven't used it before, Re-
quireJS is a popular script loader written
by James Burke - a developer who has
been quite instrumental in helping shape
the AMD module format, which we'll dis-
cuss more shortly. Some of RequireJS's
capabilities include helping to load mul-
tiple script files, helping define modules
with or without dependencies and loading

39/296

http://requirejs.org
http://requirejs.org

in non-script dependencies such as text
files.

So, why use RequireJS with Backbone?
Although Backbone is excellent when it
comes to providing a sanitary structure to
your applications, there are a few key
areas where some additional help could
be used:

1. Backbone doesn't endorse a par-
ticular approach to modular-de-
velopment. Although this means
it's quite open-ended for de-
velopers to opt for classical pat-
terns like the module-pattern or
Object Literals for structuring
their apps (which both work fine),
it also means developers aren't
sure of what works best when oth-
er concerns come into play, such
as dependency management.

40/296

RequireJS is compatible with the AMD
(Asynchronous Module Definition)
format, a format which was born from a
desire to write something better than the
'write lots of script tags with implicit de-
pendencies and manage them manually'
approach to development. In addition to
allowing you to clearly declare dependen-
cies, AMD works well in the browser, sup-
ports string IDs for dependencies, declar-
ing multiple modules in the same file and
gives you easy-to-use tools to avoid pol-
luting the global namespace.

2. Let's discuss dependency manage-
ment a little more as it can actu-
ally be quite challenging to get
right if you're doing it by hand.
When we write modules in
JavaScript, we ideally want to be
able to handle the reuse of code
units intelligently and sometimes

41/296

this will mean pulling in other
modules at run-time whilst at oth-
er times you may want to do this
dynamically to avoid a large pay-
load when the user first hits your
application.

Think about the GMail web-client for a
moment. When users initially load up the
page on their first visit, Google can simply
hide widgets such as the chat module until
a user has indicated (by clicking 'expand')
that they wish to use it. Through dynamic
dependency loading, Google could load up
the chat module only then, rather than
forcing all users to load it when the page
first initializes. This can improve perform-
ance and load times and can definitely
prove useful when building larger
applications.

42/296

I've previously written a detailed article
covering both AMD and other module
formats and script loaders in case you'd
like to explore this topic further. The
takeaway is that although it's perfectly
fine to develop applications without a
script loader or clean module format in
place, it can be of significant benefit to
consider using these tools in your applica-
tion development.

Writing AMD modules with
RequireJS

As discussed above, the overall goal for
the AMD format is to provide a solution
for modular JavaScript that developers
can use today. The two key concepts you
need to be aware of when using it with a
script-loader are a define() method for
facilitating module definition and a
require() method for handling

43/296

http://addyosmani.com/writing-modular-js

dependency loading. define() is used to
define named or unnamed modules based
on the proposal using the following
signature:

define(
module_id /*optional*/,
[dependencies] /*optional*/,
definition function /*function for instantiating the module or object*/

);

As you can tell by the inline comments,
the module_id is an optional argument
which is typically only required when
non-AMD concatenation tools are being
used (there may be some other edge cases
where it's useful too). When this argu-
ment is left out, we call the module 'an-
onymous'. When working with anonym-
ous modules, the idea of a module's iden-
tity is DRY, making it trivial to avoid du-
plication of filenames and code.

44/296

Back to the define signature, the depend-
encies argument represents an array of
dependencies which are required by the
module you are defining and the third ar-
gument ('definition function') is a func-
tion that's executed to instantiate your
module. A barebone module (compatible
with RequireJS) could be defined using
define() as follows:

// A module ID has been omitted here to make the module anonymous

define(['foo', 'bar'],
// module definition function
// dependencies (foo and bar) are mapped to function parameters
function (foo, bar) {

// return a value that defines the module export
// (i.e the functionality we want to expose for consumption)

// create your module here
var myModule = {

doStuff:function(){

45/296

console.log('Yay! Stuff');
}

}

return myModule;
});

Alternate syntax

There is also a sugared version of
define() available that allows you to de-
clare your dependencies as local variables
using require(). This will feel familiar
to anyone who's used node, and can be
easier to add or remove dependencies.
Here is the previous snippet using the al-
ternate syntax:

// A module ID has been omitted here to make the module anonymous

define(function(require){
// module definition function

46/296

http://requirejs.org/docs/whyamd.html#sugar

// dependencies (foo and bar) are defined as local vars
var foo = require('foo'),

bar = require('bar');

// return a value that defines the module export
// (i.e the functionality we want to expose for consumption)

// create your module here
var myModule = {

doStuff:function(){
console.log('Yay! Stuff');

}
}

return myModule;
});

The require() method is typically used
to load code in a top-level JavaScript file
or within a module should you wish to dy-
namically fetch dependencies. An example
of its usage is:

47/296

// Consider 'foo' and 'bar' are two external modules
// In this example, the 'exports' from the two modules loaded are passed as
// function arguments to the callback (foo and bar)
// so that they can similarly be accessed

require(['foo', 'bar'], function (foo, bar) {
// rest of your code here
foo.doSomething();

});

Wrapping modules, views and other
components with AMD

Now that we've taken a look at how to
define AMD modules, let's review how to
go about wrapping components like views
and collections so that they can also be
easily loaded as dependencies for any
parts of your application that require
them. At it's simplest, a Backbone model
may just require Backbone and Under-
score.js. These are considered it's

48/296

dependencies and so, to write an AMD
model module, we would simply do this:

define(['underscore', 'backbone'], function(_, Backbone) {
var myModel = Backbone.Model.extend({

// Default attributes
defaults: {

content: "hello world",
},

// A dummy initialization method
initialize: function() {
},

clear: function() {
this.destroy();
this.view.remove();

}

});

49/296

return myModel;
});

Note how we alias Underscore.js's in-
stance to _ and Backbone to just Back-
bone, making it very trivial to convert
non-AMD code over to using this module
format. For a view which might require
other dependencies such as jQuery, this
can similarly be done as follows:

define([
'jquery',
'underscore',
'backbone',
'collections/mycollection',
'views/myview'
], function($, _, Backbone, myCollection, myView){
var AppView = Backbone.View.extend({
...

50/296

Aliasing to the dollar-sign ($), once again
makes it very easy to encapsulate any part
of an application you wish using AMD.

Keeping Your
Templates External

Using RequireJS And
The Text Plugin

Moving your [Underscore/Mustache/
Handlebars] templates to external files is
actually quite straight-forward. As this ap-
plication makes use of RequireJS, I'll dis-
cuss how to implement external templates
using this specific script loader.

RequireJS has a special plugin called
text.js which is used to load in text file de-
pendencies. To use the text plugin, simply
follow these simple steps:

51/296

1. Download the plugin from ht-
tp://requirejs.org/docs/down-
load.html#text and place it in
either the same directory as your
application's main JS file or a
suitable sub-directory.

2. Next, include the text.js plugin in
your initial RequireJS configura-
tion options. In the code snippet
below, we assume that RequireJS
is being included in our page prior
to this code snippet being ex-
ecuted. Any of the other scripts
being loaded are just there for the
sake of example.

require.config({
paths: {

'backbone': 'libs/AMDbackbone-0.5.3',
'underscore': 'libs/underscore-1.2.2',
'text': 'libs/require/text',

52/296

'jquery': 'libs/jQuery-1.7.1',
'json2': 'libs/json2',
'datepicker': 'libs/jQuery.ui.datepicker',
'datepickermobile': 'libs/jquery.ui.datepicker.mobile',
'jquerymobile': 'libs/jquery.mobile-1.0'

},
baseUrl: 'app'

});

3. When the text! prefix is used for
a dependency, RequireJS will
automatically load the text plugin
and treat the dependency as a text
resource. A typical example of this
in action may look like..

require(['js/app', 'text!templates/mainView.html'],
function(app, mainView){

// the contents of the mainView file will be
// loaded into mainView for usage.

}
);

53/296

4. Finally we can use the text re-
source that's been loaded for tem-
plating purposes. You're probably
used to storing your HTML tem-
plates inline using a script with a
specific identifier.

With Underscore.js's micro-templating
(and jQuery) this would typically be:

HTML:

<script type="text/template" id="mainViewTemplate">
<% _.each(person, function(person_item){ %>

<%= person_item.get("name") %>
<% }); %>

</script>

JS:

var compiled_template = _.template($('#mainViewTemplate').html());

54/296

With RequireJS and the text plugin
however, it's as simple as saving your
template into an external text file (say,
mainView.html) and doing the
following:

require(['js/app', 'text!templates/mainView.html'],
function(app, mainView){

var compiled_template = _.template(mainView);
}

);

That's it!. You can then go applying your
template to a view in Backbone doing
something like:

collection.someview.el.html(compiled_template({ results: collection.models }));

All templating solutions will have their
own custom methods for handling tem-
plate compilation, but if you understand

55/296

the above, substituting Underscore's
micro-templating for any other solution
should be fairly trivial.

Note: You may also be interested in look-
ing at Require.js tpl. It's an AMD-compat-
ible version of the Underscore templating
system that also includes support for
optimization (pre-compiled templates)
which can lead to better performance and
no evals. I have yet to use it myself, but it
comes as a recommended resource.

Optimizing Backbone
apps for production
with the RequireJS

Optimizer

As experienced developers may know, an
essential final step when writing both

56/296

https://github.com/ZeeAgency/requirejs-tpl

small and large JavaScript web applica-
tions is the build process. The majority of
non-trivial apps are likely to consist of
more than one or two scripts and so op-
timizing, minimizing and concatenating
your scripts prior to pushing them to pro-
duction will require your users to down-
load a reduced number (if not just one)
script file.

Note: If you haven't looked at build pro-
cesses before and this is your first time
hearing about them, you might find my
post and screencast on this topic useful.

With some other structural JavaScript
frameworks, my recommendation would
normally be to implicitly use YUI Com-
pressor or Google's closure compiler tools,
but we have a slightly more elegant meth-
od available, when it comes to Backbone if
you're using RequireJS. RequireJS has a

57/296

http://addyosmani.com/blog/client-side-build-process/
http://addyosmani.com/blog/client-side-build-process/

command line optimization tool called r.js
which has a number of capabilities,
including:

• Concatenating specific scripts and
minifying them using external
tools such as UglifyJS (which is
used by default) or Google's Clos-
ure Compiler for optimal browser
delivery, whilst preserving the
ability to dynamically load
modules

• Optimizing CSS and stylesheets by
inlining CSS files imported using
@import, stripping out comments
etc.

• The ability to run AMD projects in
both Node and Rhino (more on
this later)

You'll notice that I mentioned the word
'specific' in the first bullet point. The

58/296

RequireJS optimizer only concatenates
module scripts that have been specified in
arrays of string literals passed to top-level
(i.e non-local) require and define calls. As
clarified by the optimizer docs this means
that Backbone modules defined like this:

define(['jquery','backbone','underscore', 'collections/sample','views/test'],
function($,Backbone, _, Sample, Test){

//...
});

will combine fine, however inline depend-
encies such as:

var models = someCondition ? ['models/ab','models/ac'] : ['models/ba','models/bc'];

will be ignored. This is by design as it en-
sures that dynamic dependency/module
loading can still take place even after
optimization.

59/296

http://requirejs.org/docs/optimization.html

Although the RequireJS optimizer works
fine in both Node and Java environments,
it's strongly recommended to run it under
Node as it executes significantly faster
there. In my experience, it's a piece of
cake to get setup with either environment,
so go for whichever you feel most com-
fortable with.

To get started with r.js, grab it from the
RequireJS download page or through
NPM. Now, the RequireJS optimizer
works absolutely fine for single script and
CSS files, but for most cases you'll want to
actually optimize an entire Backbone pro-
ject. You could do this completely from
the command-line, but a cleaner option is
using build profiles.

Below is an example of a build file taken
from the modular jQuery Mobile app ref-
erenced later in this book. A build

60/296

http://requirejs.org/docs/download.html#rjs
http://requirejs.org/docs/optimization.html#download
http://requirejs.org/docs/optimization.html#download

profile (commonly named
app.build.js) informs RequireJS to
copy all of the content of appDir to a dir-
ectory defined by dir (in this case ../
release). This will apply all of the neces-
sary optimizations inside the release
folder. The baseUrl is used to resolve the
paths for your modules. It should ideally
be relative to appDir.

Near the bottom of this sample file, you'll
see an array called modules. This is
where you specify the module names you
wish to have optimized. In this case we're
optimizing the main application called
'app', which maps to appDir/app.js. If
we had set the baseUrl to 'scripts', it
would be mapped to appDir/scripts/
app.js.

61/296

({
appDir: "./",
baseUrl: "./",
dir: "../release",
paths: {

'backbone': 'libs/AMDbackbone-0.5.3',
'underscore': 'libs/underscore-1.2.2',
'jquery': 'libs/jQuery-1.7.1',
'json2': 'libs/json2',
'datepicker': 'libs/jQuery.ui.datepicker',
'datepickermobile': 'libs/jquery.ui.datepicker.mobile',
'jquerymobile': 'libs/jquery.mobile-1.0'

},
optimize: "uglify",
modules: [

{
name: "app",
exclude: [

// If you prefer not to include certain libs exclude them here
]

}

62/296

]
})

The way the build system in r.js works is
that it traverses app.js (whatever modules
you've passed) and resolved dependen-
cies, concatenating them into the final
release(dir) folder. CSS is treated the
same way.

The build profile is usually placed inside
the 'scripts' or 'js' directory of your pro-
ject. As per the docs, this file can however
exist anywhere you wish, but you'll need
to edit the contents of your build profile
accordingly.

Finally, to run the build, execute the fol-
lowing command once inside your ap-
pDir or appDir/scripts directory:

node ../../r.js -o app.build.js

63/296

That's it. As long as you have UglifyJS/
Closure tools setup correctly, r.js should
be able to easily optimize your entire
Backbone project in just a few key-
strokes. If you would like to learn more
about build profiles, James Burke has a
heavily commented sample file with all
the possible options available.

Practical: Building a
modular Backbone app
with AMD & RequireJS

In this chapter, we'll look at our first prac-
tical Backbone & RequireJS project - how
to build a modular Todo application. The
application will allow us to add new todos,
edit new todos and clear todo items that
have been marked as completed. For a

64/296

https://github.com/jrburke/r.js/blob/master/build/example.build.js

more advanced practical, see the section
on mobile Backbone development.

The complete code for the application can
can be found in the practicals/
modular-todo-app folder of this repo
(thanks to Thomas Davis and Jérôme
Gravel-Niquet). Alternatively grab a copy
of my side-project TodoMVC which con-
tains the sources to both AMD and non-
AMD versions.

Note: Thomas may be covering a practic-
al on this exercise in more detail on back-
bonetutorials.com at some point soon, but
for this section I'll be covering what I con-
sider the core concepts.

Overview

Writing a 'modular' Backbone application
can be a straight-forward process. There

65/296

https://github.com/addyosmani/todomvc
http://backbonetutorials.com
http://backbonetutorials.com

are however, some key conceptual differ-
ences to be aware of if opting to use AMD
as your module format of choice:

• As AMD isn't a standard native to
JavaScript or the browser, it's ne-
cessary to use a script loader (such
as RequireJS or curl.js) in order to
support defining components and
modules using this module
format. As we've already reviewed,
there are a number of advantages
to using the AMD as well as Re-
quireJS to assist here.

• Models, views, controllers and
routers need to be encapsulated
using the AMD-format. This al-
lows each component of our Back-
bone application to cleanly man-
age dependencies (e.g collections
required by a view) in the same

66/296

way that AMD allows non-Back-
bone modules to.

• Non-Backbone components/mod-
ules (such as utilities or applica-
tion helpers) can also be encapsu-
lated using AMD. I encourage you
to try developing these modules in
such a way that they can both be
used and tested independent of
your Backbone code as this will in-
crease their ability to be re-used
elsewhere.

Now that we've reviewed the basics, let's
take a look at developing our application.
For reference, the structure of our app is
as follows:

index.html
...js/

main.js
.../models

67/296

todo.js
.../views

app.js
todos.js

.../collections
todos.js

.../templates
stats.html
todos.html

../libs
.../backbone
.../jquery
.../underscore
.../require

require.js
text.js

...css/

Markup

The markup for the application is relat-
ively simple and consists of three primary

68/296

parts: an input section for entering new
todo items (create-todo), a list section
to display existing items (which can also
be edited in-place) (todo-list) and fi-
nally a section summarizing how many
items are left to be completed (todo-
stats).

<div id="todoapp">

<div class="content">

<div id="create-todo">
<input id="new-todo" placeholder="What needs to be done?" type="text" />
Press Enter to save this task

</div>

<div id="todos">
<ul id="todo-list">

</div>

<div id="todo-stats"></div>

69/296

</div>

</div>

The rest of the tutorial will now focus on
the JavaScript side of the practical.

Configuration options

If you've read the earlier chapter on AMD,
you may have noticed that explicitly need-
ing to define each dependency a Backbone
module (view, collection or other module)
may require with it can get a little tedious.
This can however be improved.

In order to simplify referencing common
paths the modules in our application may
use, we use a RequireJS configuration ob-
ject, which is typically defined as a top-
level script file. Configuration objects

70/296

http://requirejs.org/docs/api.html#config
http://requirejs.org/docs/api.html#config

have a number of useful capabilities, the
most useful being mode name-mapping.
Name-maps are basically a key:value pair,
where the key defines the alias you wish to
use for a path and the value represents the
true location of the path.

In the code-sample below, you can see
some typical examples of common name-
maps which include: backbone, under-
score, jquery and depending on your
choice, the RequireJS text plugin, which
assists with loading text assets like
templates.

main.js

require.config({
baseUrl:'../',
paths: {

jquery: 'libs/jquery/jquery-min',
underscore: 'libs/underscore/underscore-min',

71/296

backbone: 'libs/backbone/backbone-optamd3-min',
text: 'libs/require/text'

}
});

require(['views/app'], function(AppView){
var app_view = new AppView;

});

The require() at the end of our main.js
file is simply there so we can load and in-
stantiation the primary view for our ap-
plication (views/app.js). You'll com-
monly see both this and the configuration
object included the most top-level script
file for a project.

In addition to offering name-mapping, the
configuration object can be used to define
additional properties such as waitSe-
conds - the number of seconds to wait
before script loading times out and

72/296

locale, should you wish to load up i18n
bundles for custom languages. The
baseUrl is simply the path to use for
module lookups.

For more information on configuration
objects, please feel free to check out the
excellent guide to them in the RequireJS
docs.

Modularizing our models,
views and collections

Before we dive into AMD-wrapped ver-
sions of our Backbone components, let's
review a sample of a non-AMD view. The
following view listens for changes to its
model (a Todo item) and re-renders if a
user edits the value of the item.

var TodoView = Backbone.View.extend({

73/296

http://requirejs.org/docs/api.html#config
http://requirejs.org/docs/api.html#config

//... is a list tag.
tagName: "li",

// Cache the template function for a single item.
template: _.template($('#item-template').html()),
// The DOM events specific to an item.
events: {

"click .check" : "toggleDone",
"dblclick div.todo-content" : "edit",
"click span.todo-destroy" : "clear",
"keypress .todo-input" : "updateOnEnter"

},

// The TodoView listens for changes to its model, re-rendering. Since there's
// a one-to-one correspondence between a **Todo** and a **TodoView** in this
// app, we set a direct reference on the model for convenience.
initialize: function() {

this.model.bind('change', this.render, this);
this.model.view = this;

},
...

74/296

Note how for templating the common
practice of referencing a script by an ID
(or other selector) and obtaining its value
is used. This of course requires that the
template being accessed is implicitly
defined in our markup. The following is
the 'embedded' version of our template
being referenced above:

<script type="text/template" id="item-template">
<div class="todo <%= done ? 'done' : '' %>">

<div class="display">
<input class="check" type="checkbox" <%= done ? 'checked="checked"' : '' %> />
<div class="todo-content"></div>

</div>
<div class="edit">

<input class="todo-input" type="text" value="" />
</div>

</div>
</script>

75/296

Whilst there is nothing wrong with the
template itself, once we begin to develop
larger applications requiring multiple
templates, including them all in our
markup on page-load can quickly become
both unmanageable and come with per-
formance costs. We'll look at solving this
problem in a minute.

Let's now take a look at the AMD-version
of our view. As discussed earlier, the
'module' is wrapped using AMD's
define() which allows us to specify the
dependencies our view requires. Using the
mapped paths to 'jquery' etc. simplifies
referencing common dependencies and
instances of dependencies are themselves
mapped to local variables that we can ac-
cess (e.g 'jquery' is mapped to $).

views/todos.js

76/296

define([
'jquery',
'underscore',
'backbone',
'text!templates/todos.html'
], function($, _, Backbone, todosTemplate){
var TodoView = Backbone.View.extend({

//... is a list tag.
tagName: "li",

// Cache the template function for a single item.
template: _.template(todosTemplate),
// The DOM events specific to an item.
events: {

"click .check" : "toggleDone",
"dblclick div.todo-content" : "edit",
"click span.todo-destroy" : "clear",
"keypress .todo-input" : "updateOnEnter"

},

77/296

// The TodoView listens for changes to its model, re-rendering. Since there's
// a one-to-one correspondence between a **Todo** and a **TodoView** in this
// app, we set a direct reference on the model for convenience.
initialize: function() {

this.model.bind('change', this.render, this);
this.model.view = this;

},

// Re-render the contents of the todo item.
render: function() {

$(this.el).html(this.template(this.model.toJSON()));
this.setContent();
return this;

},

// Use `jQuery.text` to set the contents of the todo item.
setContent: function() {

var content = this.model.get('content');
this.$('.todo-content').text(content);
this.input = this.$('.todo-input');
this.input.bind('blur', this.close);
this.input.val(content);

78/296

},
...

From a maintenance perspective, there's
nothing logically different in this version
of our view, except for how we approach
templating.

Using the RequireJS text plugin (the de-
pendency marked text), we can actually
store all of the contents for the template
we looked at earlier in an external file (to-
dos.html).

templates/todos.html

<div class="todo <%= done ? 'done' : '' %>">
<div class="display">

<input class="check" type="checkbox" <%= done ? 'checked="checked"' : '' %> />
<div class="todo-content"></div>

</div>

79/296

<div class="edit">
<input class="todo-input" type="text" value="" />

</div>
</div>
There's no longer a need to be concerned
with IDs for the template as we can map
it's contents to a local variable (in this
case todosTemplate). We then simply
pass this to the Underscore.js templating
function _.template() the same way
we normally would have the value of our
template script.

Next, let's look at how to define models as
dependencies which can be pulled into
collections. Here's an AMD-compatible
model module, which has two default val-
ues: a content attribute for the content
of a Todo item and a boolean done state,
allowing us to trigger whether the item
has been completed or not.

80/296

models/todo.js

define(['underscore', 'backbone'], function(_, Backbone) {
var TodoModel = Backbone.Model.extend({

// Default attributes for the todo.
defaults: {

// Ensure that each todo created has `content`.
content: "empty todo...",
done: false

},

initialize: function() {
},

// Toggle the `done` state of this todo item.
toggle: function() {

this.save({done: !this.get("done")});
},

// Remove this Todo from *localStorage* and delete its view.
clear: function() {

81/296

this.destroy();
this.view.remove();

}

});
return TodoModel;

});

As per other types of dependencies, we
can easily map our model module to a loc-
al variable (in this case Todo) so it can be
referenced as the model to use for our
TodosCollection. This collection also
supports a simple done() filter for nar-
rowing down Todo items that have been
completed and a remaining() filter for
those that are still outstanding.

collections/todos.js

define([
'underscore',

82/296

'backbone',
'libs/backbone/localstorage',
'models/todo'
], function(_, Backbone, Store, Todo){

var TodosCollection = Backbone.Collection.extend({
// Reference to this collection's model.
model: Todo,

// Save all of the todo items under the `"todos"` namespace.
localStorage: new Store("todos"),

// Filter down the list of all todo items that are finished.
done: function() {

return this.filter(function(todo){ return todo.get('done'); });
},

// Filter down the list to only todo items that are still not finished.
remaining: function() {

return this.without.apply(this, this.done());

83/296

},
...

In addition to allowing users to add new
Todo items from views (which we then in-
sert as models in a collection), we ideally
also want to be able to display how many
items have been completed and how many
are remaining. We've already defined fil-
ters that can provide us this information
in the above collection, so let's use them
in our main application view.

views/app.js

define([
'jquery',
'underscore',
'backbone',
'collections/todos',
'views/todos',
'text!templates/stats.html'

84/296

], function($, _, Backbone, Todos, TodoView, statsTemplate){
var AppView = Backbone.View.extend({

// Instead of generating a new element, bind to the existing skeleton of
// the App already present in the HTML.
el: $("#todoapp"),

// Our template for the line of statistics at the bottom of the app.
statsTemplate: _.template(statsTemplate),
// ...events, initialize() etc. can be seen in the complete file

// Re-rendering the App just means refreshing the statistics -- the rest
// of the app doesn't change.
render: function() {

var done = Todos.done().length;
this.$('#todo-stats').html(this.statsTemplate({

total: Todos.length,
done: Todos.done().length,
remaining: Todos.remaining().length

}));

85/296

},
...

Above, we map the second template for
this project, templates/stats.html to
statsTemplate which is used for ren-
dering the overall done and remaining
states. This works by simply passing our
template the length of our overall Todos
collection (Todos.length - the number
of Todo items created so far) and similarly
the length (counts) for items that have
been completed
(Todos.done().length) or are re-
maining
(Todos.remaining().length).

The contents of our statsTemplate can
be seen below. It's nothing too complic-
ated, but does use ternary conditions to
evaluate whether we should state there's
"1 item" or "2 items" in a particular state.

86/296

<% if (total) { %>

<%= remaining %>
<%= remaining == 1 ? 'item' : 'items' %> left.

<% } %>
<% if (done) { %>

Clear <%= done %>
completed <%= done == 1 ? 'item' : 'items' %>

<% } %>

The rest of the source for the Todo app
mainly consists of code for handling user
and application events, but that rounds up
most of the core concepts for this
practical.

87/296

To see how everything ties together, feel
free to grab the source by cloning this
repo or browse it online to learn more. I
hope you find it helpful!.

Note: While this first practical doesn't
use a build profile as outlined in the
chapter on using the RequireJS optimizer,
we will be using one in the section on
building mobile Backbone applications.

Decoupling Backbone
with the Mediator and

Facade patterns

In this section we'll discuss applying some
of the concepts I cover in my article on
Large-scale JavaScript Application devel-
opment to Backbone.

88/296

https://github.com/addyosmani/backbone-fundamentals/tree/master/practicals/modular-todo-app
http://addyosmani.com/largescalejavascript
http://addyosmani.com/largescalejavascript

Summary

At a high-level, one architecture that
works for such applications is something
which is:

• Highly decoupled: encouraging
modules to only publish and sub-
scribe to events of interest rather
than directly communicating with
each other. This helps us to build
applications who's units of code
aren't highly tied (coupled) togeth-
er and can thus be reused more
easily.

• Supports module-level secur-
ity: whereby modules are only
able to execute behavior they've
been permitted to. Application se-
curity is an area which is often
overlooked in JavaScript

89/296

applications, but can be quite eas-
ily implemented in a flexible
manner.

• Supports failover: allowing an
application continuing to function
even if particular modules fail. The
typical example I give of this is the
GMail chat widget. Imagine being
able to build applications in a way
that if one widget on the page fails
(e.g chat), the rest of your applica-
tion (mail) can continue to func-
tion without being affected.

This is an architecture which has been im-
plemented by a number of different com-
panies in the past, including Yahoo! (for
their modularized homepage - which
Nicholas Zakas has spoken about) and
AOL for some of our upcoming projects.

90/296

http://www.youtube.com/watch?v=vXjVFPosQHw

The three design patterns that make this
architecture possible are the:

• Module pattern: used for encap-
sulating unique blocks of code,
where functions and variables can
be kept either public or private.
('private' in the simulation of pri-
vacy sense, as of course don't have
true privacy in JavaScript)

• Mediator pattern: used when
the communication between mod-
ules may be complex, but is still
well defined. If it appears a system
may have too many relationships
between modules in your code, it
may be time to have a central
point of control, which is where
the pattern fits in.

• Facade pattern: used for provid-
ing a convenient higher-level in-
terface to a larger body of code,

91/296

hiding its true underlying
complexity

Their specific roles in this architecture
can be found below.

• Modules: There are almost two
concepts of what defines a mod-
ule. As AMD is being used as a
module wrapper, technically each
model, view and collection can be
considered a module. We then
have the concept of modules being
distinct blocks of code outside of
just MVC/MV*. For the latter,
these types of 'modules' are
primarily concerned with broad-
casting and subscribing to events
of interest rather than directly
communicating with each oth-
er.They are made possible through
the Mediator pattern.

92/296

• Mediator: The mediator has a
varying role depending on just
how you wish to implement it. In
my article, I mention using it as a
module manager with the ability
to start and stop modules at will,
however when it comes to Back-
bone, I feel that simplifying it
down to the role of a central 'con-
troller' that provides pub/sub cap-
abilities should suffice. One can of
course go all out in terms of build-
ing a module system that supports
module starting, stopping, pausing
etc, however the scope of this is
outside of this chapter.

• Facade: This acts as a secure
middle-layer that both abstracts
an application core (Mediator)
and relays messages from the
modules back to the Mediator so
they don't touch it directly. The

93/296

Facade also performs the duty of
application security guard; it
checks event notifications from
modules against a configuration
(permissions.js, which we will look
at later) to ensure requests from
modules are only processed if they
are permitted to execute the beha-
vior passed.

For ease of reference, I sometimes refer to
these three patterns grouped together as
Aura (a word that means subtle, luminous
light).

Practical

For the practical section of this chapter,
we'll be extending the well-known Back-
bone Todo application using the three
patterns mentioned above. The complete
code for this section can be found here:

94/296

https://github.com/addyosmani/
backbone-aura and should ideally be run
on at minimum, a local HTTP server.

The application is broken down into AMD
modules that cover everything from Back-
bone models through to application-level
modules. The views publish events of in-
terest to the rest of the application and
modules can then subscribe to these event
notifications.

All subscriptions from modules go
through a facade (or sandbox). What this
does is check against the subscriber name
and the 'channel/notification' it's attempt-
ing to subscribe to. If a channel doesn't
have permissions to be subscribed to
(something established through permis-
sions.js), the subscription isn't permitted.

Mediator

95/296

Found in aura/mediator.js

Below is a very simple AMD-wrapped im-
plementation of the mediator pattern,
based on prior work by Ryan Florence. It
accepts as it's input an object, to which it
attaches publish() and subscribe()
methods. In a larger application, the me-
diator can contain additional utilities,
such as handlers for initializing, starting
and stopping modules, but for demonstra-
tion purposes, these two methods should
work fine for our needs.

define([], function(obj){
var channels = {};
if (!obj) obj = {};

obj.subscribe = function (channel, subscription) {
if (!channels[channel]) channels[channel] = [];
channels[channel].push(subscription);

96/296

};

obj.publish = function (channel) {
if (!channels[channel]) return;
var args = [].slice.call(arguments, 1);
for (var i = 0, l = channels[channel].length; i < l; i++) {

channels[channel][i].apply(this, args);
}

};

return obj;

});

Facade

Found in aura/facade.js

Next, we have an implementation of the
facade pattern. Now the classical facade
pattern applied to JavaScript would prob-
ably look a little like this:

97/296

var module = (function() {
var _private = {

i:5,
get : function() {

console.log('current value:' + this.i);
},
set : function(val) {

this.i = val;
},
run : function() {

console.log('running');
},
jump: function(){

console.log('jumping');
}

};
return {

facade : function(args) {
_private.set(args.val);
_private.get();
if (args.run) {

_private.run();

98/296

}
}

}
}());

module.facade({run: true, val:10});
//outputs current value: 10, running

It's effectively a variation of the module
pattern, where instead of simply returning
an interface of supported methods, your
API can completely hide the true imple-
mentation powering it, returning
something simpler. This allows the logic
being performed in the background to be
as complex as necessary, whilst all the
end-user experiences is a simplified API
they pass options to (note how in our case,
a single method abstraction is exposed).
This is a beautiful way of providing APIs
that can be easily consumed.

99/296

That said, to keep things simple, our im-
plementation of an AMD-compatible
facade will act a little more like a proxy.
Modules will communicate directly
through the facade to access the
mediator's publish() and sub-
scribe() methods, however, they won't
as such touch the mediator directly.This
enables the facade to provide application-
level validation of any subscriptions and
publications made.

It also allows us to implement a simple,
but flexible, permissions checker (as seen
below) which will validate subscriptions
made against a permissions configuration
to see whether it's permitted or not.

define(["../aura/mediator" , "../aura/permissions"], function (mediator, permissions) {

var facade = facade || {};

100/296

facade.subscribe = function(subscriber, channel, callback){
// Note: Handling permissions/security is optional here
// The permissions check can be removed
// to just use the mediator directly.

if(permissions.validate(subscriber, channel)){
mediator.subscribe(channel, callback);

}
}

facade.publish = function(channel){
mediator.publish(channel);

}
return facade;

});

Permissions

Found in aura/permissions.js

101/296

In our simple permissions configuration,
we support checking against subscription
requests to establish whether they are al-
lowed to clear. This enforces a flexible se-
curity layer for the application.

To visually see how this works, consider
changing say, permissions -> renderDone
-> todoCounter to be false. This will com-
pletely disable the application from from
rendering or displaying the counts com-
ponent for Todo items left (because they
aren't allowed to subscribe to that event
notification). The rest of the Todo app can
still however be used without issue.

It's a very dumbed down example of the
potential for application security, but ima-
gine how powerful this might be in a large
app with a significant number of visual
widgets.

102/296

define([], function () {

// Permissions

// A permissions structure can support checking
// against subscriptions prior to allowing them
// to clear. This enforces a flexible security
// layer for your application.

var permissions = {

newContentAvailable: {
contentUpdater:true

},

endContentEditing:{
todoSaver:true

},

beginContentEditing:{
editFocus:true

},

103/296

addingNewTodo:{
todoTooltip:true

},

clearContent:{
garbageCollector:true

},

renderDone:{
todoCounter:true //switch to false to see what happens :)

},

destroyContent:{
todoRemover:true

},

createWhenEntered:{
keyboardManager:true

}

};

104/296

permissions.validate = function(subscriber, channel){
var test = permissions[channel][subscriber];
return test===undefined? false: test;

};

return permissions;

});

Subscribers

Found in subscribers.js

Subscriber 'modules' communicate
through the facade back to the mediator
and perform actions when a notification
event of a particular name is published.

For example, when a user enters in a new
piece of text for a Todo item and hits
'enter' the application publishes a

105/296

notification saying two things: a) a new
Todo item is available and b) the text con-
tent of the new item is X. It's then left up
to the rest of the application to do with
this information whatever it wishes.

In order to update your Backbone applica-
tion to primarily use pub/sub, a lot of the
work you may end up doing will be mov-
ing logic coupled inside of specific views
to modules outside of it which are
reactionary.

Take the todoSaver for example - it's re-
sponsibility is saving new Todo items to
models once the a notificationName
called 'newContentAvailable' has fired. If
you take a look at the permissions struc-
ture in the last code sample, you'll notice
that 'newContentAvailable' is present
there. If I wanted to prevent subscribers
from being able to subscribe to this

106/296

notification, I simply set it to a boolean
value of false.

Again, this is a massive oversimplification
of how advanced your permissions struc-
tures could get, but it's certainly one way
of controlling what parts of your applica-
tion can or can't be accessed by specific
modules at any time.

define(["jquery", "underscore", "aura/facade"],
function ($, _, facade) {

// Subscription 'modules' for our views. These take the
// the form facade.subscribe(subscriberName, notificationName , callBack)

// Update view with latest todo content
// Subscribes to: newContentAvailable

facade.subscribe('contentUpdater', 'newContentAvailable', function (context) {
var content = context.model.get('content');
context.$('.todo-content').text(content);

107/296

context.input = context.$('.todo-input');
context.input.bind('blur', context.close);
context.input.val(content);

});

// Save models when a user has finishes editing
// Subscribes to: endContentEditing
facade.subscribe('todoSaver','endContentEditing', function (context) {

try {
context.model.save({

content: context.input.val()
});
$(context.el).removeClass("editing");

} catch (e) {
//console.log(e);

}
});

// Delete a todo when the user no longer needs it
// Subscribes to: destroyContent

108/296

facade.subscribe('todoRemover','destroyContent', function (context) {
try {

context.model.clear();
} catch (e) {

//console.log(e);
}

});

// When a user is adding a new entry, display a tooltip
// Subscribes to: addingNewTodo
facade.subscribe('todoTooltip','addingNewTodo', function (context, todo) {

var tooltip = context.$(".ui-tooltip-top");
var val = context.input.val();
tooltip.fadeOut();
if (context.tooltipTimeout) clearTimeout(context.tooltipTimeout);
if (val == '' || val == context.input.attr('placeholder')) return;
var show = function () {

tooltip.show().fadeIn();
};

context.tooltipTimeout = _.delay(show, 1000);
});

109/296

// Update editing UI on switching mode to editing content
// Subscribes to: beginContentEditing
facade.subscribe('editFocus','beginContentEditing', function (context) {

$(context.el).addClass("editing");
context.input.focus();

});

// Create a new todo entry
// Subscribes to: createWhenEntered
facade.subscribe('keyboardManager','createWhenEntered', function (context, e, todos) {

if (e.keyCode != 13) return;
todos.create(context.newAttributes());
context.input.val('');

});

// A Todo and remaining entry counter
// Subscribes to: renderDone

110/296

facade.subscribe('todoCounter','renderDone', function (context, Todos) {
var done = Todos.done().length;
context.$('#todo-stats').html(context.statsTemplate({

total: Todos.length,
done: Todos.done().length,
remaining: Todos.remaining().length

}));
});

// Clear all completed todos when clearContent is dispatched
// Subscribes to: clearContent
facade.subscribe('garbageCollector','clearContent', function (Todos) {

_.each(Todos.done(), function (todo) {
todo.clear();

});
});

});

111/296

That's it for this section. If you've been in-
trigued by some of the concepts covered, I
encourage you to consider taking a look at
my slides on Large-scale JS from the
jQuery Summit or my longer post on the
topic here for more information.

Paginating Backbone.js
Requests & Collections

Pagination is a ubiquitous problem we of-
ten find ourselves needing to solve on the
web. Perhaps most predominantly when
working with back-end APIs and
JavaScript-heavy clients which consume
them.

On this topic, we're going to go through a
set of **pagination components ** I wrote
for Backbone.js, which should hopefully
come in useful if you're working on

112/296

http://addyosmani.com/blog/large-scale-javascript-application-architecture/
http://addyosmani.com/largescalejavascript

applications which need to tackle this
problem. They're part of an extension
called Backbone.Paginator.

When working with a structural frame-
work like Backbone.js, the three types of
pagination we are most likely to run into
are:

**Requests to a service layer (API) **- e.g
query for results containing the term
'Brendan' - if 5,000 results are available
only display 20 results per page (leaving
us with 250 possible result pages that can
be navigated to).

This problem actually has quite a great
deal more to it, such as maintaining per-
sistence of other URL parameters (e.g
sort, query, order) which can change
based on a user's search configuration in a
UI. One also had to think of a clean way of

113/296

http://github.com/addyosmani/backbone.paginator

hooking views up to this pagination so
you can easily navigate between pages (e.g
First, Last, Next, Previous, 1,2,3), manage
the number of results displayed per page
and so on.

Further client-side pagination of
data returned - e.g we've been returned
a JSON esponse containing 100 results.
Rather than displaying all 100 to the user,
we only display 20 of these results within
a navigatable UI in the browser.

Similar to the request problem, client-pa-
gination has its own challenges like navig-
ation once again (Next, Previous, 1,2,3),
sorting, order, switching the number of
results to display per page and so on.

Infinite results - with services such as
Facebook, the concept of numeric pagina-
tion is instead replaced with a 'Load More'

114/296

or 'View More' button. Triggering this
normally fetches the next 'page' of N res-
ults but rather than replacing the previous
set of results loaded entirely, we simply
append to them instead.

A request pager which simply appends
results in a view rather than replacing on
each new fetch is effectively an 'infinite'
pager.

Let's now take a look at exactly what
we're getting out of the box:

Backbone.Paginator is a set of opinion-
ated components for paginating collec-
tions of data using Backbone.js. It aims
to provide both solutions for assisting
with pagination of requests to a server
(e.g an API) as well as pagination of
single-loads of data, where we may wish

115/296

http://addyosmani.github.com/backbone.paginator/

to further paginate a collection of N res-
ults into M pages within a view.

Paginator's pieces

Backbone.Paginator supports two main
pagination components:

• Backbone.Paginator.re-
questPager: For pagination of
requests between a client and a
server-side API

• Backbone.Paginator.cli-
entPager: For pagination of data
returned from a server which you
would like to further paginate
within the UI (e.g 60 results are
returned, paginate into 3 pages of
20)

116/296

Downloads And Source
Code

You can either download the raw source
code for the project, fork the repository or
use one of these links:

• Production: production

• Development: development
version

• Examples + Source : zipball

• Repositoryhttp://github.com/
addyosmani/backbone.paginator)

Live Examples

Live previews of both pagination compon-
ents using the Netflix API can be found

117/296

https://raw.github.com/addyosmani/backbone.baginator/master/dist/backbone.paginator.min.js
https://raw.github.com/addyosmani/backbone.baginator/master/dist/backbone.paginator.js
https://raw.github.com/addyosmani/backbone.baginator/master/dist/backbone.paginator.js
https://github.com/addyosmani/backbone.paginator/zipball/v0.153

below. Download the tarball or fork the
repository to experiment with these ex-
amples further.

Demo 1: Back-
bone.Paginator.requestPager()

118/296

http://addyosmani.github.com/backbone.paginator/examples/netflix-request-paging/index.html
http://addyosmani.github.com/backbone.paginator/examples/netflix-request-paging/index.html

119/296

Demo 2: Back-
bone.Paginator.clientPager()

120/296

http://addyosmani.github.com/backbone.paginator/examples/netflix-client-paging/index.html
http://addyosmani.github.com/backbone.paginator/examples/netflix-client-paging/index.html

121/296

Demo 3: Infinite Pagination
(Backbone.Paginator.requestPager())

122/296

http://addyosmani.github.com/backbone.paginator/examples/netflix-infinite-paging/index.html
http://addyosmani.github.com/backbone.paginator/examples/netflix-infinite-paging/index.html

123/296

Paginator.requestPager

In this section we're going to walkthrough
actually using the requestPager.

1. Create a new Paginated collection

First, we define a new Paginated collec-
tion using Back-
bone.Paginator.requestPager() as
follows:

var PaginatedCollection = Backbone.Paginator.requestPager.extend({

2: Set the model and base URL for
the collection as normal

Within our collection, we then (as nor-
mal) specify the model to be used with
this collection followed by the URL (or

124/296

base URL) for the service providing our
data (e.g the Netflix API).

model: model,
url: 'http://odata.netflix.com/v2/Catalog/Titles?&',

3. Map the attributes supported by
your API (URL)

Next, we're going to map the request
(URL) parameters supported by your API
or backend data service back to attributes
that are internally used by Back-
bone.Paginator.

For example: the NetFlix API refers to it's
parameter for stating how many results to
skip ahead by as $skip and it's number
of items to return per page as $top
(amongst others). We determine these by
looking at a sample URL pointing at the
service:

125/296

http://odata.netflix.com/v2/Catalog/Titles?&callback=callback&$top=30&$skip=30&orderBy=ReleaseYear&$inlinecount=allpages&$format=json&$callback=callback&$filter=substringof%28%27the%27,%20Name%29%20eq%20true&_=1332702202090

We then simply map these parameters to
the relevant Paginator equivalents shown
on the left hand side of the next snippets
to get everything working:

// @param-name for the query field in the
// request (e.g query/keywords/search)
queryAttribute: '$filter',

// @param-name for number of items to return per request/page
perPageAttribute: '$top',

// @param-name for how many results the request should skip ahead to
skipAttribute: '$skip',

// @param-name for the direction to sort in
sortAttribute: '$sort',

// @param-name for field to sort by
orderAttribute: '$orderBy',

126/296

// @param-name for the format of the request
formatAttribute: '$format',

// @param-name for a custom attribute
customAttribute1: '$inlinecount',

// @param-name for another custom attribute
customAttribute2: '$callback',

Note: you can define support for new
custom attributes in Backbone.Paginator
if needed (e.g customAttribute1) for those
that may be unique to your service.

4. Configure the default pagination,
query and sort details for the

paginator

Now, let's configure the default values in
our collection for these parameters so that
as a user navigates through the paginated

127/296

UI, requests are able to continue querying
with the correct field to sort on, the right
number of items to return per request etc.

e.g: If we want to request the:

• 1st page of results
• for the search query 'superman'
• in JSON format
• sorted by release year
• in ascending order
• where only 30 results are returned

per request

This would look as follows:

// current page to query from the service
page: 5,

// The lowest page index your API allows to be accessed
firstPage: 0, //some begin with 1

128/296

// how many results to query from the service (i.e how many to return
// per request)
perPage: 30,

// maximum number of pages that can be queried from
// the server (only here as a default in case your
// service doesn't return the total pages available)
totalPages: 10,

// what field should the results be sorted on?
sortField: 'ReleaseYear',

// what direction should the results be sorted in?
sortDirection: 'asc',

// what would you like to query (search) from the service?
// as Netflix reqires additional parameters around the query
// we simply fill these around our search term
query: "substringof('" + escape('the') + "',Name)",

// what format would you like to request results in?
format: 'json',

129/296

// what other custom parameters for the request do
// you require
// for your application?
customParam1: 'allpages',

customParam2: 'callback',

As the particular API we're using requires
callback and allpages parameters to
also be passed, we simply define the val-
ues for these as custom parameters which
can be mapped back to requestPager as
needed.

5. Finally, configure
Collection.parse() and we're done

The last thing we need to do is configure
our collection's parse() method. We
want to ensure we're returning the correct
part of our JSON response containing the

130/296

data our collection will be populated with,
which below is response.d.results
(for the Netflix API).

You might also notice that we're setting
this.totalPages to the total page
count returned by the API. This allows us
to define the maximum number of (result)
pages available for the current/last re-
quest so that we can clearly display this in
the UI. It also allows us to infuence
whether clicking say, a 'next' button
should proceed with a request or not.

parse: function (response) {
// Be sure to change this based on how your results
// are structured (e.g d.results is Netflix specific)
var tags = response.d.results;
//Normally this.totalPages would equal response.d.__count
//but as this particular NetFlix request only returns a
//total count of items for the search, we divide.
this.totalPages = Math.floor(response.d.__count / this.perPage);

131/296

return tags;
}

});

});

Convenience methods:

For your convenience, the following meth-
ods are made available for use in your
views to interact with the
requestPager:

• Collection.goTo(n) - go to a
specific page

• Collection.requestNextPage()
- go to the next page

• Collection.requestPrevi-
ousPage() - go to the previous
page

132/296

• Collection.howManyPer(n) -
set the number of items to display
per page

Paginator.clientPager

The clientPager works similar to the
requestPager, except that our configur-
ation values influence the pagination of
data already returned at a UI-level. Whilst
not shown (yet) there is also a lot more UI
logic that ties in with the clientPager.
An example of this can be seen in
â€˜views/clientPagination.js.

1. Create a new paginated collection
with a model and URL

As with requestPager, let's first create
a new Paginated

133/296

Backbone.Paginator.clientPager
collection, with a model and base URL:

var PaginatedCollection = Backbone.Paginator.clientPager.extend({
model: model,

url: 'http://odata.netflix.com/v2/Catalog/Titles?&',

2. Map the attributes supported by
your API (URL)

We're similarly going to map request
parameter names for your API to those
supported in the paginator:

perPageAttribute: '$top',

skipAttribute: '$skip',

orderAttribute: '$orderBy',

134/296

customAttribute1: '$inlinecount',

queryAttribute: '$filter',

formatAttribute: '$format',

customAttribute2: '$callback',

3. Configure how to paginate data at
a UI-level

We then get to configuration for the pa-
ginated data in the UI. perPage specifies
how many results to return from the serv-
er whilst displayPerPage configures
how many of the items in returned results
to display per 'page' in the UI. e.g If we re-
quest 100 results and only display 20 per
page, we have 5 sub-pages of results that
can be navigated through in the UI.

135/296

// M: how many results to query from the service
perPage: 40,

// N: how many results to display per 'page' within the UI
// Effectively M/N = the number of pages the data will be split into.
displayPerPage: 20,

4. Configure the rest of the request
parameter default values

We can then configure default values for
the rest of our request parameters:

// current page to query from the service
page: 1,

// a default. This should be overridden in the collection's parse()
// sort direction
sortDirection: 'asc',

// sort field
sortField: 'ReleaseYear',

136/296

//or year(Instant/AvailableFrom)

// query
query: "substringof('" + escape('the') + "',Name)",

// request format
format: 'json',

// custom parameters for the request that may be specific to your
// application
customParam1: 'allpages',

customParam2: 'callback',

5. Finally, configure
Collection.parse() and we're done

And finally we have our parse() meth-
od, which in this case isn't concerned with
the total number of result pages available
on the server as we have our own total

137/296

count of pages for the paginated data in
the UI.

parse: function (response) {
var tags = response.d.results;
return tags;

}

});

Convenience methods:

As mentioned, your views can hook into a
number of convenience methods to navig-
ate around UI-paginated data. For cli-
entPager these include:

• Collection.goTo(n) - go to a
specific page

• Collection.previousPage() - go
to the previous page

138/296

• Collection.nextPage() - go to
the next page

• Collection.howManyPer(n) -
set how many items to display per
page

• Collection.pager(sortBy,
sortDirection) - update sort on
the current view

Views/Templates

Although the collection layer is perhaps
the most important part of Backbone.Pa-
ginator, it would be of little use without
views interacting with it. The project zip-
ball comes with three complete examples
of using the components with the Netflix
API, but here's a sample view and tem-
plate from the requestPager() ex-
ample for those interested in learning
more:

139/296

First, we have a view for a pagination bar
in our UI that allows us to navigate
around our paginated collection:

(function (views) {

views.PaginatedView = Backbone.View.extend({
events: {

'click a.servernext': 'nextResultPage',
'click a.serverprevious': 'previousResultPage',
'click a.orderUpdate': 'updateSortBy',
'click a.serverlast': 'gotoLast',
'click a.page': 'gotoPage',
'click a.serverfirst': 'gotoFirst',
'click a.serverpage': 'gotoPage',
'click .serverhowmany a': 'changeCount'

},

tagName: 'aside',

140/296

template: _.template($('#tmpServerPagination').html()),
initialize: function () {

this.collection.on('reset', this.render, this);
this.collection.on('change', this.render, this);
this.$el.appendTo('#pagination');

},

render: function () {
var html = this.template(this.collection.info());
this.$el.html(html);

},

updateSortBy: function (e) {
e.preventDefault();
var currentSort = $('#sortByField').val();
this.collection.updateOrder(currentSort);

},

nextResultPage: function (e) {

141/296

e.preventDefault();
this.collection.requestNextPage();

},

previousResultPage: function (e) {
e.preventDefault();
this.collection.requestPreviousPage();

},

gotoFirst: function (e) {
e.preventDefault();
this.collection.goTo(this.collection.information.firstPage);

},

gotoLast: function (e) {
e.preventDefault();
this.collection.goTo(this.collection.information.lastPage);

},

gotoPage: function (e) {
e.preventDefault();
var page = $(e.target).text();

142/296

this.collection.goTo(page);
},

changeCount: function (e) {
e.preventDefault();
var per = $(e.target).text();
this.collection.howManyPer(per);

}

});

})(app.views);

which we use with a template like this to
generate the necessary pagination links
(more are shown in the full example):

/
<% if (page > firstPage) { %>

Previous
<% }else{ %>

Previous

143/296

<% }%>
<% if (page < totalPages) { %>

Next
<% } %>
<% if (firstPage != page) { %>

First
<% } %>
<% if (lastPage != page) { %>

Last
<% } %>
/

Show
3
|
9
|
12
per page

/

144/296

Page: <%= page %>
of
<%= totalPages %>

shown

/

Sort by:

<select id="sortByField">

<option value="cid">Select a field to sort on</option>
<option value="ReleaseYear">Release year</option>
<option value="ShortName">Alphabetical</option>

</select>

145/296

Backbone & jQuery
Mobile

Resolving the routing conflicts

The first major hurdle developers typic-
ally run into when building Backbone ap-
plications with jQuery Mobile is that both
frameworks have their own opinions
about how to handle application
navigation.

Backbone's routers offer an explicit way to
define custom navigation routes through
Backbone.Router, whilst jQuery
Mobile encourages the use of URL hash
fragments to reference separate 'pages' or
views in the same document. jQuery
Mobile also supports automatically
pulling in external content for links
through XHR calls meaning that there can

146/296

be quite a lot of inter-framework confu-
sion about what a link pointing at
'#photo/id' should actually be doing.

Some of the solutions that have been pre-
viously proposed to work-around this
problem included manually patching
Backbone or jQuery Mobile. I discourage
opting for these techniques as it becomes
necessary to manually patch your frame-
work builds when new releases get made
upstream.

There's also jQueryMobile router, which
tries to solve this problem differently,
however I think my proposed solution is
both simpler and allows both frameworks
to cohabit quite peacefully without the
need to extend either. What we're after is
a way to prevent one framework from
listening to hash changes so that we can
fully rely on the other (e.g.

147/296

https://github.com/azicchetti/jquerymobile-router

Backbone.Router) to handle this for us
exclusively.

Using jQuery Mobile this can be done by
setting:

$.mobile.hashListeningEnabled = false;
prior to initializing any of your other code.

I discovered this method looking through
some jQuery Mobile commits that didn't
make their way into the official docs, but
am happy to see that they are now covered
here http://jquerymobile.com/test/docs/
api/globalconfig.html in more detail.

The next question that arises is, if we're
preventing jQuery Mobile from listening
to URL hash changes, how can we still get
the benefit of being able to navigate to
other sections in a document using the

148/296

built-in transitions and effects supported?
Good question. This can now be solve by
simply calling
$.mobile.changePage() as follows:

var url = '#about',
effect = 'slideup',
reverse = false,
changeHash = false;

$.mobile.changePage(url , { transition: effect}, reverse, changeHash);

In the above sample, url can refer to a
URL or a hash identifier to navigate to,
effect is simply the transition effect to
animate the page in with and the final two
parameters decide the direction for the
transition (reverse) and whether or not
the hash in the address bar should be up-
dated (changeHash). With respect to the
latter, I typically set this to false to avoid
managing two sources for hash updates,

149/296

but feel free to set this to true if you're
comfortable doing so.

Note: For some parallel work being done
to explore how well the jQuery Mobile
Router plugin works with Backbone, you
may be interested in checking out ht-
tps://github.com/Filirom1/jquery-
mobile-backbone-requirejs.

Practical: A Backbone,
RequireJS/AMD app with

jQuery Mobile

Note: The code for this practical can be
found in practicals/modular-
mobile-app.

150/296

Getting started

Once you feel comfortable with the Back-
bone fundamentals and you've put togeth-
er a rough wireframe of the app you may
wish to build, start to think about your ap-
plication architecture. Ideally, you'll want
to logically separate concerns so that it's
as easy as possible to maintain the app in
the future.

Namespacing

For this application, I opted for the nested
namespacing pattern. Implemented cor-
rectly, this enables you to clearly identify
if items being referenced in your app are
views, other modules and so on. This ini-
tial structure is a sane place to also in-
clude application defaults (unless you
prefer maintaining those in a separate
file).

151/296

http://msdn.microsoft.com/en-us/scriptjunkie/hh377172.aspx
http://msdn.microsoft.com/en-us/scriptjunkie/hh377172.aspx

window.mobileSearch = window.mobileSearch || {
views: {

appview: new AppView
},
routers:{

workspace:new Workspace()
},
utils: utils,
defaults:{

resultsPerPage: 16,
safeSearch: 2,
maxDate:'',
minDate:'01/01/1970'

}
}

Models

In the Flickly application, there are at
least two unique types of data that need to
be modeled - search results and individual
photos, both of which contain additional

152/296

meta-data like photo titles. If you simplify
this down, search results are actually
groups of photos in their own right, so the
application only requires:

• A single model (a photo or 'result'
entry)

• A result collection (containing a
group of result entries) for search
results

• A photo collection (containing one
or more result entries) for indi-
vidual photos or photos with more
than one image

Views

The views we'll need include an applica-
tion view, a search results view and a
photo view. Static views or pages of the
single-page application which do not re-
quire a dynamic element to them (e.g an

153/296

'about' page) can be easily coded up in
your document's markup, independent of
Backbone.

Routers

A number of possible routes need to be
taken into consideration:

• Basic search queries #search/
kiwis

• Search queries with additional
parameters (e.g sort, pagination)
#search/kiwis/srelevance/
p7

• Queries for specific photos
#photo/93839

• A default route (no parameters
passed)

This tutorial will be expanded shortly to
fully cover the demo application. In the

154/296

mean time, please see the practicals folder
for the completed application that demon-
strates the router resolution discussed
earlier between Backbone and jQuery
Mobile.

jQuery Mobile: Going beyond
mobile application

development

The majority of jQM apps I've seen in pro-
duction have been developed for the pur-
pose of providing an optimal experience
to users on mobile devices. Given that the
framework was developed for this pur-
pose, there's nothing fundamentally
wrong with this, but many developers for-
get that jQM is a UI framework not dis-
similar to jQuery UI. It's using the widget
factory and is capable of being used for a
lot more than we give it credit for.

155/296

If you open up Flickly in a desktop
browser, you'll get an image search UI
that's modeled on Google.com, however,
review the components (buttons, text in-
puts, tabs) on the page for a moment. The
desktop UI doesn't look anything like a
mobile application yet I'm still using jQM
for theming mobile components; the tabs,
date-picker, sliders - everything in the
desktop UI is re-using what jQM would be
providing users on mobile devices.
Thanks to some media queries, the
desktop UI can make optimal use of
whitespace, expanding component blocks
out and providing alternative layouts
whilst still making use of jQM as a com-
ponent framework.

The benefit of this is that I don't need to
go pulling in jQuery UI separately to be
able to take advantage of these features.
Thanks to the recent ThemeRoller my

156/296

components can look pretty much exactly
how I would like them to and users of the
app can get a jQM UI for lower-resolu-
tions and a jQM-ish UI for everything
else.

The takeaway here is just to remember
that if you're not (already) going through
the hassle of conditional script/style load-
ing based on screen-resolution (using
matchMedia.js etc), there are simpler ap-
proaches that can be taken to cross-device
component theming.

Unit Testing

157/296

Unit Testing
Backbone

Applications With
Jasmine

Introduction

One definition of unit testing is the pro-
cess of taking the smallest piece of test-
able code in an application, isolating it
from the remainder of your codebase and
determining if it behaves exactly as expec-
ted. In this section, we'll be taking a look
at how to unit test Backbone applications
using a popular JavaScript testing frame-
work called Jasmine from Pivotal Labs.

http://pivotal.github.com/jasmine/

For an application to be considered 'well'-
tested, distinct functionality should
ideally have its own separate unit tests
where it's tested against the different con-
ditions you expect it to work under. All
tests must pass before functionality is
considered 'complete'. This allows de-
velopers to both modify a unit of code and
it's dependencies with a level of confid-
ence about whether these changes have
caused any breakage.

As a basic example of unit testing is where
a developer may wish to assert whether
passing specific values through to a sum
function results in the correct output be-
ing returned. For an example more relev-
ant to this book, we may wish to assert
whether a user adding a new Todo item to
a list correctly adds a Model of a specific
type to a Todos Collection.

159/296

When building modern web-applications,
it's typically considered best-practice to
include automated unit testing as a part of
your development process. Whilst we'll be
focusing on Jasmine as a solution for this,
there are a number of other alternatives
worth considering, including QUnit.

Jasmine

Jasmine describes itself as a behavior-
driven development (BDD) framework for
testing JavaScript code. Before we jump
into how the framework works, it's useful
to understand exactly what BDD is.

BDD is a second-generation testing ap-
proach first described by Dan North (the
authority on BDD) which attempts to test
the behavior of software. It's considered
second-generation as it came out of

160/296

http://en.wikipedia.org/wiki/Behavior_Driven_Development
http://dannorth.net/introducing-bdd/

merging ideas from Domain driven design
(DDD) and lean software development,
helping teams to deliver high quality soft-
ware by answering many of the more con-
fusing questions early on in the agile pro-
cess. Such questions commonly include
those concerning documentation and
testing.

If you were to read a book on BDD, it's
likely to also be described as being
'outside-in and pull-based'. The reason for
this is that it borrows the idea of of pulling
features from Lean manufacturing which
effectively ensures that the right software
solutions are being written by a) focusing
on expected outputs of the system and b)
ensuring these outputs are achieved.

BDD recognizes that there are usually
multiple stakeholders in a project and not
a single amorphous user of the system.

161/296

These different groups will be affected by
the software being written in differing
ways and will have a varying opinion of
what quality in the system means to them.
It's for this reason that it's important to
understand who the software will be
bringing value you and exactly what in it
will be valuable to them.

Finally, BDD relies on automation. Once
you've defined the quality expected, your
team will likely want to check on the func-
tionality of the solution being built regu-
larly and compare it to the results they ex-
pect. In order to facilitate this efficiently,
the process has to be automated. BDD re-
lies heavily on the automation of
specification-testing and Jasmine is a tool
which can assist with this.

BDD helps both developers and non-tech-
nical stakeholders:

162/296

• Better understand and represent
the models of the problems being
solved

• Explain supported tests cases in a
language that non-developers can
read

• Focus on minimizing translation
of the technical code being written
and the domain language spoken
by the business

What this means is that developers should
be able to show Jasmine unit tests to a
project stakeholder and (at a high level,
thanks to a common vocabulary being
used) they'll ideally be able to understand
what the code supports.

Developers often implement BDD in uni-
son with another testing paradigm known
as TDD (test-driven development). The
main idea behind TDD is:

163/296

http://en.wikipedia.org/wiki/Test-driven_development

• Write unit tests which describe the
functionality you would like your
code to support

• Watch these tests fail (as the code
to support them hasn't yet been
written)

• Write code to make the tests pass
• Rinse, repeat and refactor

In this chapter we're going to use both
BDD (with TDD) to write unit tests for a
Backbone application.

Note: I've seen a lot of developers also
opt for writing tests to validate behavior
of their code after having written it. While
this is fine, note that it can come with pit-
falls such as only testing for behavior your
code currently supports, rather than beha-
vior the problem needs to be supported.

164/296

Suites, Specs & Spies

When using Jasmine, you'll be writing
suites and specifications (specs). Suites
basically describe scenarios whilst specs
describe what can be done in these
scenarios.

Each spec is a JavaScript function, de-
scribed with a call to `it() using a de-
scription string and a function. The de-
scription should describe the behaviour
the particular unit of code should exhibit
and keeping in mind BDD, it should
ideally be meaningful. Here's an example
of a basic spec:

it('should be incrementing in value', function(){
var counter = 0;
counter++;

});

165/296

On it's own, a spec isn't particularly useful
until expectations are set about the beha-
vior of the code. Expectations in specs are
defined using the expect() function and
an expectation matcher (e.g toEqual(),
toBeTruthy(), toContain()). A revised ex-
ample using an expectation matcher
would look like:

it('should be incrementing in value', function(){
var counter = 0;
counter++;
expect(counter).toEqual(1);

});

The above code passes our behavioral ex-
pectation as `counter equals 1. Notice
how easy this was to read the expectation
on the last line (you probably grokked it
without any explanation).

166/296

https://github.com/pivotal/jasmine/wiki/Matchers

Specs are grouped into suites which we
describe using Jasmine's describe()
function, again passing a string as a de-
scription and a function. The name/de-
scription for your suite is typically that of
the component or module you're testing.

Jasmine will use it as the group name
when it reports the results of the specs
you've asked it to run. A simple suite con-
taining our sample spec could look like:

describe('Stats', function(){
it('can increment a number', function(){

...
});

it('can subtract a number', function(){
...

});
});

167/296

Suites also share a functional scope and so
it's possible to declare variables and func-
tions inside a describe block which are ac-
cessible within specs:

describe('Stats', function(){
var counter = 1;

it('can increment a number', function(){
// the counter was = 1
counter = counter + 1;
expect(counter).toEqual(2);

});

it('can subtract a number', function(){
// the counter was = 2
counter = counter - 1;
expect(counter).toEqual(1);

});
});

168/296

Note: Suites are executed in the order in
which they are described, which can be
useful to know if you would prefer to see
test results for specific parts of your ap-
plication reported first.

Jasmine also supports spies - a way to
mock, spy and fake behavior in our unit
tests. Spies replace the function they're
spying on, allowing us to simulate behavi-
or we would like to mock (i.e test free of
the actual implementation).

In the below example, we're spying on the
setComplete method of a dummy Todo
function to test that arguments can be
passed to it as expected.

var Todo = function(){
};

Todo.prototype.setComplete = function (arg){

169/296

return arg;
}

describe('a simple spy', function(){
it('should spy on an instance method of a Todo', function(){

var myTodo = new Todo();
spyOn(myTodo, 'setComplete');
myTodo.setComplete('foo bar');
expect(myTodo.setComplete).toHaveBeenCalledWith('foo bar');
var myTodo2 = new Todo();
spyOn(myTodo2, 'setComplete');

expect(myTodo2.setComplete).not.toHaveBeenCalled();
});

});

What you're more likely to use spies for is
testing asynchronous behavior in your

170/296

http://en.wikipedia.org/wiki/Asynchronous_communication

application such as AJAX requests. Jas-
mine supports:

• Writing tests which can mock
AJAX requests using spies. This
allows us to test code which runs
before an AJAX request and right
after. It's also possible to mock/
fake responses the server can re-
turn and the benefit of this type of
testing is that it's faster as no real
calls are being made to a server

• Asynchronous tests which don't
rely on spies

For the first kind of test, it's possible to
both fake an AJAX request and verify that
the request was both calling the correct
URL and executed a callback where one
was provided.

171/296

it("the callback should be executed on success", function () {
spyOn($, "ajax").andCallFake(function(options) {

options.success();
});

var callback = jasmine.createSpy();
getTodo(15, callback);

expect($.ajax.mostRecentCall.args[0]["url"]).toEqual("/todos/15");
expect(callback).toHaveBeenCalled();

});

function getTodo(id, callback) {
$.ajax({

type: "GET",
url: "/todos/" + id,
dataType: "json",
success: callback

});
}

172/296

If you feel lost having seen matchers like
andCallFake() and
toHaveBeenCalled(), don't worry. All
of these are Spy-specific matchers and are
documented on the Jasmine wiki.

For the second type of test (asynchronous
tests), we can take the above further by
taking advantage of three other methods
Jasmine supports:

• runs(function) - a block which
runs as if it was directly called

• waits(timeout) - a native timeout
before the next block is run

• waitsFor(function, optional mes-
sage, optional timeout) - a way to
pause specs until some other work
has completed. Jasmine waits un-
til the supplied function returns
true here before it moves on to the
next block.

173/296

https://github.com/pivotal/jasmine/wiki/Spies

it("should make an actual AJAX request to a server", function () {

var callback = jasmine.createSpy();
getTodo(16, callback);

waitsFor(function() {
return callback.callCount > 0;

});

runs(function() {
expect(callback).toHaveBeenCalled();

});
});

function getTodo(id, callback) {
$.ajax({

type: "GET",
url: "todos.json",
dataType: "json",
success: callback

});
}

174/296

Note: It's useful to remember that when
making real requests to a web server in
your unit tests, this has the potential to
massively slow down the speed at which
tests run (due to many factors including
server latency). As this also introduces an
external dependency that can (and
should) be minimized in your unit testing,
it is strongly recommended that you opt
for spies to remove the need for a web
server to be used here.

beforeEach and
afterEach()

Jasmine also supports specifying code
that can be run before each
(beforeEach()) and after each
(afterEach) test. This is useful for en-
forcing consistent conditions (such as re-
setting variables that may be required by

175/296

specs). In the following example, be-
foreEach() is used to create a new
sample Todo model specs can use for test-
ing attributes.

beforeEach(function(){
this.todo = new Backbone.Model({

text: "Buy some more groceries",
done: false

});
});

it("should contain a text value if not the default value", function(){
expect(this.todo.get('text')).toEqual("Buy some more groceries");

});

Each nested describe() in your tests
can have their own beforeEach() and
afterEach() methods which support
including setup and teardown methods
relevant to a particular suite. We'll be

176/296

using beforeEach() in practice a little
later.

Shared scope

In the previous section you may have no-
ticed that we initially declared a variable
this.todo in our beforeEach() call
and were then able to continue using this
in afterEach(). This is thanks to a
powerful feature of Jasmine known as
shared functional scope. Shared scope al-
lows this properties to be common to all
blocks (including runs()), but not de-
clared variables (i.e vars).

Getting setup

Now that we've reviewed some funda-
mentals, let's go through downloading

177/296

Jasmine and getting everything setup to
write tests.

A standalone release of Jasmine can be
downloaded from the official release page.

You'll need a file called SpecRunner.html
in addition to the release. It can be down-
loaded from https://github.com/pivotal/
jasmine/tree/master/lib/jasmine-core/
example or as part of a download of the
complete Jasmine repo.Alternatively, you
can git clone the main Jasmine repos-
itory from https://github.com/pivotal/
jasmine.git.

Let's review SpecRunner.html:

It first includes both Jasmine and the ne-
cessary CSS required for reporting:

178/296

http://pivotal.github.com/jasmine/download.html
https://github.com/pivotal/jasmine/zipball/master
https://github.com/pivotal/jasmine/blob/master/lib/jasmine-core/example/SpecRunner.html

<link rel="stylesheet" type="text/css" href="lib/jasmine-1.1.0.rc1/jasmine.css"/>
<script type="text/javascript" src="lib/jasmine-1.1.0.rc1/jasmine.js"></script>
<script type="text/javascript" src="lib/jasmine-1.1.0.rc1/jasmine-html.js"></script>

Next, some sample tests are included:

<script type="text/javascript" src="spec/SpecHelper.js"></script>
<script type="text/javascript" src="spec/PlayerSpec.js"></script>

And finally the sources being tested:

<script type="text/javascript" src="src/Player.js"></script>
<script type="text/javascript" src="src/Song.js"></script>

Note: Below this section of SpecRunner
is code responsible for running the actual
tests. Given that we won't be covering
modifying this code, I'm going to skip re-
viewing it. I do however encourage you to
take a look through PlayerSpec.js and
SpecHelper.js. They're a useful basic

179/296

https://github.com/pivotal/jasmine/blob/master/lib/jasmine-core/example/spec/PlayerSpec.js
https://github.com/pivotal/jasmine/blob/master/lib/jasmine-core/example/spec/SpecHelper.js

example to go through how a minimal set
of tests might work.

TDD With Backbone

When developing applications with Back-
bone, it can be necessary to test both indi-
vidual modules of code as well as mod-
ules, views, collections and routers. Tak-
ing a TDD approach to testing, let's review
some specs for testing these Backbone
components using the popular Backbone
Todo application. For this section we will
be using a modified version of Larry My-
ers Backbone Koans project, which can be
found in the practicals\jasmine-
koans folder.

180/296

https://github.com/addyosmani/todomvc/tree/master/todo-example/backbone

Models

The complexity of Backbone models can
vary greatly depending on what your ap-
plication is trying to achieve. In the fol-
lowing example, we're going to test de-
fault values, attributes, state changes and
validation rules.

First, we begin our suite for model testing
using describe():

describe('Tests for Todo', function() {
Models should ideally have default values
for attributes. This helps ensure that when
creating instances without a value set for
any specific attribute, a default one (e.g
"") is used instead. The idea here is to al-
low your application to interact with mod-
els without any unexpected behavior.

181/296

In the following spec, we create a new
Todo without any attributes passed then
check to find out what the value of the
text attribute is. As no value has been
set, we expect a default value of `"" to be
returned.

it('Can be created with default values for its attributes.', function() {
var todo = new Todo();
expect(todo.get('text')).toBe("");

});

If testing this spec before your models
have been written, you'll incur a failing
test, as expected. What's required for the
spec to pass is a default value for the at-
tribute text. We can implement this de-
fault value with some other useful defaults
(which we'll be using shortly) in our Todo
model as follows:

182/296

window.Todo = Backbone.Model.extend({
defaults: function() {

return {
text: "",
done: false,
order: 0

};
}

Next, we want to test that our model will
pass attributes that are set such that re-
trieving the value of these attributes after
initialization will be what we expect.
Notice that here, in addition to testing for
an expected value for text, we're also
testing the other default values are what
we expect them to be.

it('Will set passed attributes on the model instance when created.', function() {
var todo = new Todo({ text: 'Get oil change for car.' });

183/296

// what are the values expected here for each of the
// attributes in our Todo?

expect(todo.get('text')).toBe("Get oil change for car.");
expect(todo.get('done')).toBe(false);
expect(todo.get('order')).toBe(0);

});

Backbone models support a mod-
el.change() event which is triggered when
the state of a model changes. In the fol-
lowing example, by 'state' I'm referring to
the value of a Todo model's attributes.
The reason changes of state are important
to test are that there may be state-de-
pendent events in your application e.g you
may wish to display a confirmation view
once a Todo model has been updated.

it('Fires a custom event when the state changes.', function() {
var spy = jasmine.createSpy('-change event callback-');

184/296

var todo = new Todo();

// how do we monitor changes of state?
todo.bind('change', spy);
// what would you need to do to force a change of state?
todo.set({ text: 'Get oil change for car.' });

expect(spy).toHaveBeenCalled();
});

It's common to include validation logic in
your models to ensure both the input
passed from users (and other modules) in
the application are 'valid'. A Todo app
may wish to validate the text input sup-
plied in case it contains rude words. Sim-
ilarly if we're storing the done state of a
Todo item using booleans, we need to val-
idate that truthy/falsy values are passed
and not just any arbitrary string.

185/296

In the following spec, we take advantage
of the fact that validations which fail mod-
el.validate() trigger an "error" event. This
allows us to test if validations are cor-
rectly failing when invalid input is
supplied.

We create an errorCallback spy using
Jasmine's built in createSpy() method
which allows us to spy on the error event
as follows:

it('Can contain custom validation rules, and will trigger an error event on failed validation.', function() {
var errorCallback = jasmine.createSpy('-error event callback-');
var todo = new Todo();

todo.bind('error', errorCallback);
// What would you need to set on the todo properties to
// cause validation to fail?

186/296

todo.set({done:'a non-integer value'});
var errorArgs = errorCallback.mostRecentCall.args;
expect(errorArgs).toBeDefined();
expect(errorArgs[0]).toBe(todo);
expect(errorArgs[1]).toBe('Todo.done must be a boolean value.');

});

The code to make the above failing test
support validation is relatively simple. In
our model, we override the validate()
method (as recommended in the Back-
bone docs), checking to make sure a mod-
el both has a 'done' property and is a valid
boolean before allowing it to pass.

validate: function(attrs) {
if (attrs.hasOwnProperty('done') && !_.isBoolean(attrs.done)) {

return 'Todo.done must be a boolean value.';

187/296

}
}

If you would like to review the final code
for our Todo model, you can find it below:

var NAUGHTY_WORDS = /crap|poop|hell|frogs/gi;

function sanitize(str) {
return str.replace(NAUGHTY_WORDS, 'rainbows');

}

window.Todo = Backbone.Model.extend({
defaults: function() {

return {
text: '',
done: false,
order: 0

};
},

188/296

initialize: function() {
this.set({text: sanitize(this.get('text'))}, {silent: true});

},

validate: function(attrs) {
if (attrs.hasOwnProperty('done') && !_.isBoolean(attrs.done)) {

return 'Todo.done must be a boolean value.';
}

},

toggle: function() {
this.save({done: !this.get("done")});

}

});

Collections

We now need to define specs to tests a
Backbone collection of Todo models (a
TodoList). Collections are responsible for

189/296

a number of list tasks including managing
order and filtering.

A few specific specs that come to mind
when working with collections are:

• Making sure we can add new Todo
models as both objects and arrays

• Attribute testing to make sure at-
tributes such as the base URL of
the collection are values we expect

• Purposefully adding items with a
status of done:true and check-
ing against how many items the
collection thinks have been com-
pleted vs. those that are remaining

In this section we're going to cover the
first two of these with the third left as an
extended exercise I recommend trying
out.

190/296

Testing Todo models can be added to a
collection as objects or arrays is relatively
trivial. First, we initialize a new TodoList
collection and check to make sure it's
length (i.e the number of Todo models it
contains) is 0. Next, we add new Todos,
both as objects and arrays, checking the
length property of the collection at each
stage to ensure the overall count is what
we expect:

describe('Tests for TodoList', function() {
it('Can add Model instances as objects and arrays.', function() {

var todos = new TodoList();

expect(todos.length).toBe(0);
todos.add({ text: 'Clean the kitchen' });

// how many todos have been added so far?
expect(todos.length).toBe(1);

191/296

todos.add([
{ text: 'Do the laundry', done: true },
{ text: 'Go to the gym'}

]);

// how many are there in total now?
expect(todos.length).toBe(3);

});
...

Similar to model attributes, it's also quite
straight-forward to test attributes in col-
lections. Here we have a spec that ensures
the collection.url (i.e the url reference to
the collection's location on the server) is
what we expect it to be:

it('Can have a url property to define the basic url structure for all contained models.', function() {
var todos = new TodoList();

// what has been specified as the url base in our model?

192/296

expect(todos.url).toBe('/todos/');
});

For the third spec, it's useful to remember
that the implementation for our collection
will have methods for filtering how many
Todo items are done and how many are
remaining - we can call these done() and
remaining(). Consider writing a spec
which creates a new collection and adds
one new model that has a preset done
state of true and two others that have the
default done state of false. Testing the
length of what's returned using done()
and remaining() should allow us to
know whether the state management in
our application is working or needs a little
tweaking.

The final implementation for our
TodoList collection can be found below:

193/296

window.TodoList = Backbone.Collection.extend({
model: Todo,

url: '/todos/',

done: function() {
return this.filter(function(todo) { return todo.get('done'); });

},

remaining: function() {
return this.without.apply(this, this.done());

},

nextOrder: function() {
if (!this.length) {

return 1;
}

return this.last().get('order') + 1;
},

194/296

comparator: function(todo) {
return todo.get('order');

}

});

Views

Before we take a look at testing Backbone
views, let's briefly review a jQuery plugin
that can assist with writing Jasmine specs
for them.

The Jasmine jQuery Plugin

As we know our Todo application will be
using jQuery for DOM manipulation,
there's a useful jQuery plugin called
jasmine-jquery we can use to help simpli-
fy BDD testing rendered elements that
our views may produce.

195/296

https://github.com/velesin/jasmine-jquery

The plugin provides a number of addi-
tional Jasmine matchers to help test
jQuery wrapped sets such as:

• toBe(jQuerySelector) e.g
expect($('<div id="some-
id"></di-
v>')).toBe('div#some-id')

• toBeChecked() e.g ex-
pect($('<input
type="checkbox"
checked="checked"/>')).toBeChecked()

• toBeSelected() e.g ex-
pect($('<option selec-
ted="selec-
ted"></op-
tion>')).toBeSelected()

and many others. The complete list of
matchers supported can be found on the
project homepage. It's useful to know that

196/296

https://github.com/pivotal/jasmine/wiki/Matchers
https://github.com/velesin/jasmine-jquery

similar to the standard Jasmine matchers,
the custom matchers above can be inver-
ted using the .not prefix (i.e ex-
pect(x).not.toBe(y)):

expect($('<div>I am an example</div>')).not.toHaveText(/other/)

jasmine-jquery also includes a fixtures
model, allowing us to load in arbitrary
HTML content we may wish to use in our
tests. Fixtures can be used as follows:

Include some HTML in an external fix-
tures file:

some.fixture.html: <div id="sample-
fixture">some HTML con-
tent</div>

Next, inside our actual test we would load
it as follows:

197/296

loadFixtures('some.fixture.html')
$('some-fixture').myTestedPlugin();
expect($('#some-fixture')).to<the rest of your matcher would go here>

The jasmine-jquery plugin is by default
setup to load fixtures from a specific dir-
ectory: spec/javascripts/fixtures. If you
wish to configure this path you can do so
by initially setting jasmine.getFix-
tures().fixturesPath = 'your
custom path'.

Finally, jasmine-jquery includes support
for spying on jQuery events without the
need for any extra plumbing work. This
can be done using the spyOnEvent()
and as-
sert(eventName).toHaveBeenTriggered(se-
lector) functions. An example of usage
may look as follows:

198/296

spyOnEvent($('#el'), 'click');
$('#el').click();
expect('click').toHaveBeenTriggeredOn($('#el'));

View testing

In this section we will review three dimen-
sions to writing specs for Backbone Views:
initial setup, view rendering and finally
templating. The latter two of these are the
most commonly tested, however we'll re-
view shortly why writing specs for the ini-
tialization of your views can also be of
benefit.

Initial setup

At their most basic, specs for Backbone
views should validate that they are being
correctly tied to specific DOM elements
and are backed by valid data models. The

199/296

reason to consider doing this is that fail-
ures to such specs can trip up more com-
plex tests later on and they're fairly simple
to write, given the overall value offered.

To help ensure a consistent testing setup
for our specs, we use beforeEach() to
append both an empty UL (#todoList) to
the DOM and initialize a new instance of a
TodoView using an empty Todo model.
afterEach() is used to remove the pre-
vious #todoList UL as well as the previous
instance of the view.

describe('Tests for TodoView', function() {
beforeEach(function() {

$('body').append('<ul id="todoList">');
this.todoView = new TodoView({ model: new Todo() });

});

200/296

afterEach(function() {
this.todoView.remove();
$('#todoList').remove();

});

...

The first spec useful to write is a check
that the TodoView we've created is using
the correct tagName (element or
className). The purpose of this test is to
make sure it's been correctly tied to a
DOM element when it was created.

Backbone views typically create empty
DOM elements once initialized, however
these elements are not attached to the vis-
ible DOM in order to allow them to be
constructed without an impact on the per-
formance of rendering.

201/296

it('Should be tied to a DOM element when created, based off the property provided.', function() {
//what html element tag name represents this view?
expect(todoView.el.tagName.toLowerCase()).toBe('li');

});

Once again, if the TodoView has not
already been written, we will experience
failing specs. Thankfully, solving this is as
simple as creating a new Backbone.View
with a specific tagName.

var todoView = Backbone.View.extend({
tagName: "li"

});

If instead of testing against the tagName
you would prefer to use a className in-
stead, we can take advantage of jasmine-
jquery's toHaveClass() matcher to
cater for this.

202/296

it('Should have a class of "todos"'), function(){
expect($(this.view.el)).toHaveClass('todos');

});

The toHaveClass() matcher operates
on jQuery objects and if the plugin hadn't
been used, an exception would have been
incurred (it is of course also possible to
test for the className by accessing
el.className if not opting to use jasmine-
jquery).

You may have noticed that in be-
foreEach(), we passed our view an ini-
tial (albeit unfilled) Todo model. Views
should be backed by a model instance
which provides data. As this is quite im-
portant to our view's ability to function,
we can write a spec to ensure a model is
both defined (using the toBeDefined()
matcher) and then test attributes of the

203/296

model to ensure defaults both exist and
are the value we expect them to be.

it('Is backed by a model instance, which provides the data.', function() {
expect(todoView.model).toBeDefined();
// what's the value for Todo.get('done') here?
expect(todoView.model.get('done')).toBe(false); //or toBeFalsy()

});

View rendering

Next we're going to take a look at writing
specs for view rendering. Specifically, we
want to test that our TodoView elements
are actually rendering as expected.

In smaller applications, those new to BDD
might argue that visual confirmation of
view rendering could replace unit testing

204/296

of views. The reality is that when dealing
with applications that might grow to
multiple-views, it often makes sense to
automate this process as much as possible
from the get-go. There are also aspects of
rendering that require verification beyond
what is visually presented on-screen
(which we'll see very shortly).

We're going to begin testing views by writ-
ing two specs. The first spec will check
that the view's render() method is cor-
rectly returning the view instance, which
is necessary for chaining. Our second spec
will check that the HTML produced is ex-
actly what we expect based on the proper-
ties of the model instance that's been as-
sociated with our TodoView.

Unlike some of the previous specs we've
covered, this section will make greater use
of beforeEach() to both demonstrate

205/296

how to use nested suites and also ensure a
consistent set of conditions for our specs.
In our first view spec for TodoView, we're
simply going to create a sample model
(based on Todo) and instantiate a
TodoView which associates it with the
model.

describe("TodoView", function() {
beforeEach(function() {

this.model = new Backbone.Model({
text: "My Todo",
order: 1,
done: false

});
this.view = new TodoView({model:this.model});

});

describe("Rendering", function() {
it("returns the view object", function() {

206/296

expect(this.view.render()).toEqual(this.view);
});

it("produces the correct HTML", function() {
this.view.render();
//let's use jasmine-jquery's toContain() to avoid
//testing for the complete content of a todo's markup
expect(this.view.el.innerHTML)

.toContain('<label class="todo-content">My Todo</label>');
});

});

});

Once these specs are run, only the second
one ('produces the correct HTML') fails.
Our first spec ('returns the view object'),
which is testing that the TodoView in-
stance is returned from render(), only
passed as this is Backbone's default

207/296

behavior. We haven't yet overwritten the
render() method with our own version.

Note: For the purposes of maintaining
readability, all template examples in this
section will use a minimal version of the
following Todo view template. As it's rel-
atively trivial to expand this, please feel
free to refer to this sample if needed:

<div class="todo <%= done ? 'done' : '' %>">
<div class="display">

<input class="check" type="checkbox" <%= done ? 'checked="checked"' : '' %> />
<label class="todo-content"><%= text %></label>

</div>
<div class="edit">

<input class="todo-input" type="text" value="<%= content %>" />
</div>

</div>

208/296

The second spec fails with the following
message:

Expected '' to contain '<label
class="todo-content">My
Todo</label>'.

The reason for this is the default behavior
for render() doesn't create any markup.
Let's write a replacement for render()
which fixes this:

render: function() {
var template = '<label class="todo-content"><%= text %></label>';
var output = template

.replace("<%= text %>", this.model.get('text'));
$(this.el).html(output);
return this;

}

The above specifies an inline string tem-
plate and replaces fields found in the

209/296

template within the "<% %>" blocks with
their corresponding values from the asso-
ciated model. As we're now also returning
the TodoView instance from the method,
the first spec will also pass. It's worth not-
ing that there are serious drawbacks to us-
ing HTML strings in your specs to test
against like this. Even minor changes to
your template (a simple tab or
whitespace) would cause your spec to fail,
despite the rendered output being the
same. It's also more time consuming to
maintain as most templates in real-world
applications are significantly more com-
plex. A better option for testing rendered
output is using jQuery to both select and
inspect values.

With this in mind, let's re-write the specs,
this time using some of the custom
matchers offered by jasmine-jquery:

210/296

describe("Template", function() {
beforeEach(function() {

this.view.render();
});

it("has the correct text content", function() {
expect($(this.view.el).find('todo-content'))

.toHaveText('My Todo');
});

});

It would be impossible to discuss unit
testing without mentioning fixtures. Fix-
tures typically contain test data (e.g
HTML) that is loaded in when needed
(either locally or from an external file) for
unit testing. So far we've been establishing
jQuery expectations based on the view's el
property. This works for a number of
cases, however, there are instances where

211/296

it may be necessary to render markup into
the document. The most optimal way to
handle this within specs is through using
fixtures (another feature brought to us by
the jasmine-jquery plugin).

Re-writing the last spec to use fixtures
would look as follows:

describe("TodoView", function() {
beforeEach(function() {

...
setFixtures('<ul class="todos">');

});

...

describe("Template", function() {
beforeEach(function() {

$('.todos').append(this.view.render().el);

212/296

});

it("has the correct text content", function() {
expect($('.todos').find('.todo-content'))

.toHaveText('My Todo');
});

});

});

What we're now doing in the above spec is
appending the rendered todo item into
the fixture. We then set expectations
against the fixture, which may be
something desirable when a view is setup
against an element which already exists in
the DOM. It would be necessary to
provide both the fixture and test the el
property correctly picking up the element
expected when the view is instantiated.

213/296

Rendering with a
templating system

JavaScript templating systems (such as
Handlebars, Mustache and even
Underscore's own Micro-templating) sup-
port conditional logic in template strings.
What this effectively means is that we can
add if/else/ternery expressions inline
which can then be evaluated as needed,
allowing us to build even more powerful
templates.

In our case, when a user sets a Todo item
to be complete (done), we may wish to
provide them with visual feedback (such
as a striked line through the text) to dif-
ferentiate the item from those that are re-
maining. This can be done by attaching a
new class to the item. Let's begin by writ-
ing a test we would ideally like to work:

214/296

describe("When a todo is done", function() {
beforeEach(function() {

this.model.set({done: true}, {silent: true});
$('.todos').append(this.view.render().el);

});

it("has a done class", function() {
expect($('.todos .todo-content:first-child'))

.toHaveClass("done");
});

});

This will fail with the following message:

Expected 'My Todo' to have class 'done'.

which can be fixed in the existing render()
method as follows:

215/296

render: function() {
var template = '<label class="todo-content">' +

'<%= text %></label>';
var output = template

.replace("<%= text %>", this.model.get('text'));
$(this.el).html(output);
if (this.model.get('done')) {

this.$(".todo-content").addClass("done");
}
return this;

}

This can however get unwieldily fairly
quickly. As the logic in our templates in-
creases, so does the complexity involved.
This is where templates libraries can help.
As mentioned earlier, there are a number
of popular options available, but for the
purposes of this chapter we're going to
stick to using Underscore's built-in Micro-
templating. Whilst there are more ad-
vanced options you're free to explore, the

216/296

benefit of this is that no additional files
are required and we can easily change the
existing Jasmine specs without too much
adjustment.

The TodoView object modified to use
Underscore templating would look as
follows:

var TodoView = Backbone.View.extend({
tagName: "li",

initialize: function(options) {
this.template = _.template(options.template || "");

},

render: function() {
$(this.el).html(this.template(this.model.toJSON()));
return this;

},

217/296

...

});

Above, the initialize() method compiles a
supplied Underscore template (using the
_.template() function) in the instanti-
ation. A more common way of referencing
templates is placing them in a script tag
using a custom script type (e.g type="text/
template"). As this isn't a script type any
browser understands, it's simply ignored,
however referencing the script by an id at-
tribute allows the template to be kept sep-
arate to other parts of the page which
wish to use it. In real world applications,
it's preferable to either do this or load in
templates stored in external files for
testing.

For testing purposes, we're going to con-
tinue using the string injection approach

218/296

to keep things simple. There is however a
useful trick that can be applied to auto-
matically create or extend templates in
the Jasmine scope for each test. By creat-
ing a new directory (say, 'templates') in
the 'spec' folder and adding a new script
file with the following contents, to jas-
mine.yml or SpecRunner.html, we can
add a todo property which contains the
Underscore template we wish to use:

beforeEach(function() {
this.templates = _.extend(this.templates || {}, {

todo: '<label class="todo-content">' +
'<%= text %>' +

'</label>'
});

});

To finish this off, we simply update our
existing spec to reference the template
when instantiating the TodoView object:

219/296

describe("TodoView", function() {
beforeEach(function() {

...
this.view = new TodoView({

model: this.model,
template: this.templates.todo

});
});

...

});

The existing specs we've looked at would
continue to pass using this approach,
leaving us free to adjust the template with
some additional conditional logic for
Todos with a status of 'done':

beforeEach(function() {
this.templates = _.extend(this.templates || {}, {

220/296

todo: '<label class="todo-content <%= done ? 'done' : '' %>"' +
'<%= text %>' +

'</label>'
});

});

This will now also pass without any issues.
Remember that jasmine-jquery also sup-
ports loading external fixtures into your
specs easily using it's build in loadFix-
tures() and readFixtures() meth-
ods. For more information, consider read-
ing the official jasmine-jquery docs.

Conclusions

We have now covered how to write Jas-
mine tests for models, views and collec-
tions with Backbone.js. Whilst testing
routing can at times be desirable, some
developers feel it can be more optimal to

221/296

https://github.com/velesin/jasmine-jquery

leave this to third-party tools such as Sel-
enium, so do keep this in mind.

James Newbery was kind enough to help
me with writing the Views section above
and his articles on Testing Backbone Apps
With SinonJS were of great inspiration
(you'll actually find some Handlebars ex-
amples of the view specs in part 3 of his
article). If you would like to learn more
about writing spies and mocks for Back-
bone using SinonJS as well as how to test
Backbone routers, do consider reading his
series.

Exercise

As an exercise, I recommend now trying
the Jasmine Koans in practic-
als\jasmine-joans and trying to fix
some of the purposefully failing tests it

222/296

http://tinnedfruit.com/2011/04/26/testing-backbone-apps-with-jasmine-sinon-3.html
http://tinnedfruit.com/2011/04/26/testing-backbone-apps-with-jasmine-sinon-3.html
http://sinonjs.org

has to offer. This is an excellent way of not
just learning how Jasmine specs and
suites work, but working through the ex-
amples (without peaking back) will also
put your Backbone skills to test too.

Further reading

• Jasmine + Backbone Revisited
• Backbone, PhantomJS and

Jasmine

223/296

http://japhr.blogspot.com/2011/11/jasmine-backbonejs-revisited.html
http://japhr.blogspot.com/2011/12/phantomjs-and-backbonejs-and-requirejs.html
http://japhr.blogspot.com/2011/12/phantomjs-and-backbonejs-and-requirejs.html

Unit Testing
Backbone

Applications With
QUnit And

SinonJS

Introduction

QUnit is a powerful JavaScript test suite
written by jQuery team member Jörn
Zaefferer and used by many large open-
source projects (such as jQuery and Back-
bone.js) to test their code. It's both cap-
able of testing standard JavaScript code in
the browser as well as code on the server-
side (where environments supported

http://bassistance.de/
http://bassistance.de/

include Rhino, V8 and SpiderMonkey).
This makes it a robust solution for a large
number of use-cases.

Quite a few Backbone.js contributors feel
that QUnit is a better introductory frame-
work for testing if you don't wish to start
off with Jasmine and BDD right away. As
we'll see later on in this chapter, QUnit
can also be combined with third-party
solutions such as SinonJS to produce an
even more powerful testing solution sup-
porting spies and mocks, which some say
is preferable over Jasmine.

My personal recommendation is that it's
worth comparing both frameworks and
opting for the solution that you feel the
most comfortable with.

225/296

QUnit

Getting Setup

Luckily, getting QUnit setup is a fairly
straight-forward process that will take less
than 5 minutes.

We first setup a testing environment com-
posed of three files:

• A HTML structure for displaying
test results,

• The qunit.js file composing the
testing framework and,

• The qunit.css file for styling test
results.

The latter two of these can be downloaded
from the QUnit website.

http://qunitjs.com

If you would prefer, you can use a hosted
version of the QUnit source files for test-
ing purposes. The hosted URLs can be
found at [http://github.com/jquery/
qunit/raw/master/qunit/].

Sample HTML with
QUnit-compatible markup:

<!DOCTYPE html>
<html>
<head>

<title>QUnit Test Suite</title>
<link rel="stylesheet" href="qunit.css">
<script src="qunit.js"></script>
<!-- Your application -->
<script src="app.js"></script>
<!-- Your tests -->
<script src="tests.js"></script>

227/296

</head>
<body>

<h1 id="qunit-header">QUnit Test Suite</h1>
<h2 id="qunit-banner"></h2>
<div id="qunit-testrunner-toolbar"></div>
<h2 id="qunit-userAgent"></h2>
<ol id="qunit-tests">test markup, hidden.

</body>
</html>
Let's go through the elements above with
qunit mentioned in their ID. When QUnit
is running:

• qunit-header shows the name of
the test suite

• qunit-banner shows up as red if
a test fails and green if all tests
pass

• qunit-testrunner-toolbar con-
tains additional options for config-
uring the display of tests

228/296

• qunit-userAgent displays the
navigator.userAgent property

• qunit-tests is a container for our
test results

When running correctly, the above test
runner looks as follows:

screenshot 1

The numbers of the form (a, b, c) after
each test name correspond to a) failed as-
serts, b) passed asserts and c) total

229/296

asserts. Clicking on a test name expands it
to display all of the assertions for that test
case. Assertions in green have successfully
passed.

screenshot 2

If however any tests fail, the test gets
highlighted (and the qunit-banner at the
top switches to red):

230/296

screenshot 3

Assertions

QUnit supports a number of basic asser-
tions, which are used in testing to verify
that the result being returned by our code
is what we expect. If an assertion fails, we
know that a bug exists.Similar to Jasmine,
QUnit can be used to easily test for regres-
sions. Specifically, when a bug is found
one can write an assertion to test the

231/296

existence of the bug, write a patch and
then commit both. If subsequent changes
to the code break the test you'll know
what was responsible and be able to ad-
dress it more easily.

Some of the supported QUnit assertions
we're going to look at first are:

• ok (state, message) -
passes if the first argument is
truthy

• equal (actual, expected,
message) - a simple comparis-
on assertion with type coercion

• notEqual (actual, expec-
ted, message) - the opposite
of the above

• expect(amount) - the num-
ber of assertions expected to run
within each test

232/296

• strictEqual(actual, ex-
pected, message) - offers a
much stricter comparison than
equal() and is considered the
preferred method of checking
equality as it avoids stumbling on
subtle coercion bugs

• deepEqual(actual, expec-
ted, message) - similar to
strictEqual, comparing the
contents (with ===) of the given
objects, arrays and primitives.

Creating new test cases with QUnit is
relatively straight-forward and can be
done using test(), which constructs a
test where the first argument is the name
of the test to be displayed in our results
and the second is a callback function
containing all of our assertions. This is
called as soon as QUnit is running.

233/296

Basic test case using test(name,
callback):

var myString = 'Hello Backbone.js';

test('Our first QUnit test - asserting results', function(){
// ok(boolean, message)
ok(true, 'the test succeeds');
ok(false, 'the test fails');

// equal(actualValue, expectedValue, message)
equal(myString, 'Hello Backbone.js', 'The value expected is Hello Backbone.js!');

});

What we're doing in the above is defining
a variable with a specific value and then
testing to ensure the value was what we
expected it to be. This was done using the
comparison assertion, equal(), which
expects its first argument to be a value be-
ing tested and the second argument to be

234/296

the expected value. We also used ok(),
which allows us to easily test against func-
tions or variables that evaluate to
booleans.

Note: Optionally in our test case, we could
have passed an 'expected' value to
test() defining the number of assertions
we expect to run. This takes the form:
test(name, [expected], test);
or by manually settings the expectation at
the top of the test function, like so: ex-
pect(1). I recommend you to make it
a habit and always define how many as-
sertions you expect. More on this later.

As testing a simple static variable is fairly
trivial, we can take this further to test ac-
tual functions. In the following example
we test the output of a function that re-
verses a string to ensure that the output is
correct using equal() and notEqual():

235/296

Comparing the actual output of a
function against the expected

output:

function reverseString(str){
return str.split("").reverse().join("");

}

test('reverseString()', function() {
expect(5);
equal(reverseString('hello'), 'olleh', 'The value expected was olleh');
equal(reverseString('foobar'), 'raboof', 'The value expected was raboof');
equal(reverseString('world'), 'dlrow', 'The value expected was dlrow');
notEqual(reverseString('world'), 'dlroo', 'The value was expected to not be dlroo');
equal(reverseString('bubble'), 'double', 'The value expected was elbbub');

})

Running these tests in the QUnit test run-
ner (which you would see when your
HTML test page was loaded) we would
find that four of the assertions pass whilst
the last one does not. The reason the test

236/296

against 'double' fails is because it was
purposefully written incorrectly. In your
own projects if a test fails to pass and your
assertions are correct, you've probably
just found a bug!

Adding structure to
assertions

Housing all of our assertions in one test
case can quickly become difficult to main-
tain, but luckily QUnit supports structur-
ing blocks of assertions more cleanly. This
can be done using module() - a method
that allows us to easily group tests togeth-
er. A typical approach to grouping might
be keeping multiple tests testing a specific
method as part of the same group
(module).

237/296

Basic QUnit Modules:

module('Module One');
test('first test', function() {});
test('another test', function() {});
module('Module Two');
test('second test', function() {});
test('another test', function() {});
module('Module Three');
test('third test', function() {});
test('another test', function() {});
We can take this further by introducing
setup() and teardown() callbacks to
our modules, where setup() is run be-
fore each test whilst teardown() is run
after each test.

238/296

Using setup() and teardown() :

module("Module One", {
setup: function() {

// run before
},
teardown: function() {

// run after
}

});

test("first test", function() {
// run the first test

});

These callbacks can be used to define (or
clear) any components we wish to instan-
tiate for use in one or more of our tests. As
we'll see shortly, this is ideal for defining
new instances of views, collections, mod-
els or routers from a project that we can
then reference across multiple tests.

239/296

Using setup() and teardown() for
instantiation and clean-up:

// Define a simple model and collection modeling a store and
// list of stores

var Store = Backbone.Model.extend({});
var StoreList = Backbone.Collection.extend({

model: store,
comparator: function(store) { return store.get('name') }

});

// Define a group for our tests
module("StoreList sanity check", {

setup: function() {
this.list = new StoreList;
this.list.add(new Store({ name: "Costcutter" }));
this.list.add(new Store({ name: "Target" }));
this.list.add(new Store({ name: "Walmart" }));
this.list.add(new Store({ name: "Barnes & Noble" });

},

240/296

teardown: function() {
window.errors = null;

}
});

// Test the order of items added
test("test ordering", function() {

expect(1);
var expected = ["Barnes & Noble", "Costcutter", "Target", "Walmart"];
var actual = this.list.pluck("name");
deepEqual(actual, expected, "is maintained by comparator");

});

Here, a list of stores is created and stored
on setup(). A teardown() callback is
used to simply clear our a list of errors we
might be storing within the window scope,
but is otherwise not needed.

241/296

Assertion examples

Before we continue any further, let's re-
view some more examples of how QUnits
various assertions can be correctly used
when writing tests:

equal - a comparison
assertion. It passes if actual ==

expected

test("equal", 2, function() {
var actual = 6 - 5;
equal(actual, true, "passes as 1 == true");
equal(actual, 1, "passes as 1 == 1");

});

242/296

notEqual - a comparison
assertion. It passes if actual !=

expected

test("notEqual", 2, function() {
var actual = 6 - 5;
notEqual(actual, false, "passes as 1 != false");
notEqual(actual, 0, "passes as 1 != 0");

});

strictEqual - a comparison
assertion. It passes if actual

=== expected.

test("strictEqual", 2, function() {
var actual = 6 - 5;
strictEqual(actual, true, "fails as 1 !== true");
strictEqual(actual, 1, "passes as 1 === 1");

});

243/296

notStrictEqual - a comparison
assertion. It passes if actual

!== expected.

test("notStrictEqual", 2, function() {
var actual = 6 - 5;
notStrictEqual(actual, true, "passes as 1 !== true");
notStrictEqual(actual, 1, "fails as 1 === 1");

});

deepEqual - a recursive
comparison assertion. Unlike

strictEqual(), it works on
objects, arrays and primitives.

test("deepEqual", 4, function() {
var actual = {q: 'foo', t: 'bar'};
var el = $('div');
var children = $('div').children();

equal(actual, {q: 'foo', t: 'bar'}, "fails - objects are not equal using equal()");

244/296

deepEqual(actual, {q: 'foo', t: 'bar'}, "passes - objects are equal");
equal(el, children, "fails - jQuery objects are not the same");
deepEqual(el, children, "fails - objects not equivalent");

});

notDeepEqual - a comparison
assertion. This returns the

opposite of deepEqual

test("notDeepEqual", 2, function() {
var actual = {q: 'foo', t: 'bar'};
notEqual(actual, {q: 'foo', t: 'bar'}, "passes - objects are not equal");
notDeepEqual(actual, {q: 'foo', t: 'bar'}, "fails - objects are equivalent");

});

245/296

raises - an assertion which
tests if a callback throws any

exceptions

test("raises", 1, function() {
raises(function() {

throw new Error("Oh no! It's an error!");
}, "passes - an error was thrown inside our callback");

});

Fixtures

From time to time we may need to write
tests that modify the DOM. Managing the
clean-up of such operations between tests
can be a genuine pain, but thankfully
QUnit has a solution to this problem in
the form of the #qunit-fixture ele-
ment, seen below.

246/296

Fixture markup:

<!DOCTYPE html>
<html>
<head>

<title>QUnit Test</title>
<link rel="stylesheet" href="qunit.css">
<script src="qunit.js"></script>
<script src="app.js"></script>
<script src="tests.js"></script>

</head>
<body>

<h1 id="qunit-header">QUnit Test</h1>
<h2 id="qunit-banner"></h2>
<div id="qunit-testrunner-toolbar"></div>
<h2 id="qunit-userAgent"></h2>
<ol id="qunit-tests">
<div id="qunit-fixture"></div>

</body>
</html>

247/296

We can either opt to place static markup
in the fixture or just insert/append any
DOM elements we may need to it. QUnit
will automatically reset the innerHTML of
the fixture after each test to its original
value. In case you're using jQuery, it's use-
ful to know that QUnit checks for its avail-
ability and will opt to use $(el).html()
instead, which will cleanup any jQuery
event handlers too.

Fixtures example:

Let us now go through a more complete
example of using fixtures. One thing that
most of us are used to doing in jQuery is
working with lists - they're often used to
define the markup for menus, grids and a
number of other components. You may
have used jQuery plugins before that ma-
nipulated a given list in a particular way
and it can be useful to test that the final

248/296

(manipulated) output of the plugin is
what was expected.

For the purposes of our next example,
we're going to use Ben Alman's
$.enumerate() plugin, which can pre-
pend each item in a list by its index, op-
tionally allowing us to set what the first
number in the list is. The code snippet for
the plugin can be found below, followed
by an example of the output is generates:

$.fn.enumerate = function(start) {
if (typeof start !== "undefined") {

// Since `start` value was provided, enumerate and return
// the initial jQuery object to allow chaining.

return this.each(function(i){
$(this).prepend("" + (i + start) + " ");

});

} else {

249/296

// Since no `start` value was provided, function as a
// getter, returing the appropriate value from the first
// selected element.

var val = this.eq(0).children("b").eq(0).text();
return Number(val);

}
};

/*

1. hello
2. world
3. i
4. am
5. foo

*/

Let's now write some specs for the plugin.
First, we define the markup for a list

250/296

containing some sample items inside our
qunit-fixture element:

<div id="qunit-fixture">

hello
world
i
am
foo

</div>

Next, we need to think about what should
be tested. $.enumerate() supports a
few different use cases, including:

• No arguments passed - i.e
$(el).enumerate()

• 0 passed as an argument - i.e
$(el).enumerate(0)

251/296

• 1 passed as an argument - i.e
$(el).enumerate(1)

As the text value for each list item is of the
form "n. item-text" and we only require
this to test against the expected output,
we can simply access the content using
$(el).eq(index).text() (for more
information on .eq() see here).

and finally, here are our test cases:

module("jQuery#enumerate");

test("No arguments passed", 5, function() {
var items = $("#qunit-fixture li").enumerate();
equal(items.eq(0).text(), "1. hello", "first item should have index 1");
equal(items.eq(1).text(), "2. world", "second item should have index 2");
equal(items.eq(2).text(), "3. i", "third item should have index 3");
equal(items.eq(3).text(), "4. am", "fourth item should have index 4");
equal(items.eq(4).text(), "5. foo", "fifth item should have index 5");

});

252/296

http://api.jquery.com/eq/

test("0 passed as an argument", 5, function() {
var items = $("#qunit-fixture li").enumerate(0);
equal(items.eq(0).text(), "0. hello", "first item should have index 0");
equal(items.eq(1).text(), "1. world", "second item should have index 1");
equal(items.eq(2).text(), "2. i", "third item should have index 2");
equal(items.eq(3).text(), "3. am", "fourth item should have index 3");
equal(items.eq(4).text(), "4. foo", "fifth item should have index 4");

});

test("1 passed as an argument", 3, function() {
var items = $("#qunit-fixture li").enumerate(1);
equal(items.eq(0).text(), "1. hello", "first item should have index 1");
equal(items.eq(1).text(), "2. world", "second item should have index 2");
equal(items.eq(2).text(), "3. i", "third item should have index 3");
equal(items.eq(3).text(), "4. am", "fourth item should have index 4");
equal(items.eq(4).text(), "5. foo", "fifth item should have index 5");

});

253/296

Asynchronous code

As with Jasmine, the effort required to
run synchronous tests with QUnit is fairly
straight-forward. That said, what about
tests that require asynchronous callbacks
(such as expensive processes, Ajax re-
quests and so on)? When we're dealing
with asynchronous code, rather than let-
ting QUnit control when the next test
runs, we can inform that we need it to
stop running and wait until it's okay to
continue once again.

Remember: running asynchronous code
without any special considerations can
cause incorrect assertions to appear in
other tests, so we want to make sure we
get it right.

254/296

Writing QUnit tests for asynchronous
code is made possible using the start()
and `stop() methods, which program-
matically set the start and stop points dur-
ing such tests. Here's a simple example:

test("An async test", function(){
stop();
expect(1);
$.ajax({

url: "/test",
dataType: 'json',
success: function(data){

deepEqual(data, {
topic: "hello",
message: "hi there!"

});
start();

}
});

});

255/296

A jQuery $.ajax() request is used to
connect to a test resource and assert that
the data returned is correct. deep-
Equal() is used here as it allows us to
compare different data types (e.g objects,
arrays) and ensures that what is returned
is exactly what we're expecting. We know
that our Ajax request is asynchronous and
so we first call stop(), run the code mak-
ing the request and finally at the very end
of our callback, inform QUnit that it is
okay to continue running other tests.

Note: rather than including stop(), we
can simply exclude it and substitute
test() with asyncTest() if we prefer.
This improves readability when dealing
with a mixture of asynchronous and syn-
chronous tests in your suite. Whilst this
setup should work fine for many use-
cases, there is no guarantee that the call-
back in our $.ajax() request will

256/296

actually get called. To factor this into our
tests, we can use expect() once again to
define how many assertions we expect to
see within our test. This is a healthy safety
blanket as it ensures that if a test com-
pletes with an insufficient number of as-
sertions, we know something went wrong
and fix it.

257/296

SinonJS
Similar to the section on testing Back-
bone.js apps using the Jasmine BDD
framework, we're nearly ready to take
what we've learned and write a number of
QUnit tests for our Todo application.

Before we start though, you may have no-
ticed that QUnit doesn't support test
spies. Test spies are functions which re-
cord arguments, exceptions and return
values for any of their calls. They're typic-
ally used to test callbacks and how func-
tions may be used in the application being
tested. In testing frameworks, spies can
usually be either anonymous functions or
wrap functions which already exist.

What is SinonJS?

In order for us to substitute support for
spies in QUnit, we will be taking advant-
age of a mocking framework called
SinonJS by Christian Johansen. We will
also be using the SinonJS-QUnit adapter
which provides seamless integration with
QUnit (meaning setup is minimal).
Sinon.JS is completely test-framework ag-
nostic and should be easy to use with any
testing framework, so it's ideal for our
needs.

The framework supports three features
we'll be taking advantage of for unit test-
ing our application:

• Anonymous spies
• Spying on existing methods
• A rich inspection interface

259/296

http://sinonjs.org/
http://sinonjs.org/qunit/

Using this.spy() without any argu-
ments creates an anonymous spy. This is
comparable to jasmine.createSpy()
and we can observe basic usage of a
SinonJS spy in the following example:

Basic Spies:

test("should call all subscribers for a message exactly once", function () {
var message = getUniqueString();
var spy = this.spy();
PubSub.subscribe(message, spy);
PubSub.publishSync(message, "Hello World");

ok(spy1.calledOnce, "the subscriber was called once");
});

We can also use this.spy() to spy on
existing functions (like jQuery's $.ajax)
in the example below. When spying on a
function which already exists, the function

260/296

behaves normally but we get access to
data about its calls which can be very use-
ful for testing purposes.

Spying On Existing Functions:

test("should inspect jQuery.getJSON's usage of jQuery.ajax", function () {
this.spy(jQuery, "ajax");

jQuery.getJSON("/todos/completed");

ok(jQuery.ajax.calledOnce);
equals(jQuery.ajax.getCall(0).args[0].url, "/todos/completed");
equals(jQuery.ajax.getCall(0).args[0].dataType, "json");

});

SinonJS comes with a rich spy interface
which callows us to test whether a spy was
called with a specific argument, if it was
called a specific number of times and test
against the values of arguments. A com-
plete list of features supported in the

261/296

interface can be found here
(http://sinonjs.org/docs/), but let's take a
look at some examples demonstrating
some of the most commonly used ones:

Matching arguments: test a spy was
called with a specific set of

arguments:

test("Should call a subscriber with standard matching": function () {
var spy = sinon.spy();
PubSub.subscribe("message", spy);
PubSub.publishSync("message", { id: 45 });

assertTrue(spy.calledWith({ id: 45 }));
});

262/296

Stricter argument matching: test a
spy was called at least once with

specific arguments and no others:

test("Should call a subscriber with strict matching": function () {
var spy = sinon.spy();
PubSub.subscribe("message", spy);
PubSub.publishSync("message", "many", "arguments");
PubSub.publishSync("message", 12, 34);

// This passes
assertTrue(spy.calledWith("many"));
// This however, fails
assertTrue(spy.calledWithExactly("many"));

});

263/296

Testing call order: testing if a spy
was called before or after another

spy:

test("Should call a subscriber and maintain call order": function () {
var a = sinon.spy();
var b = sinon.spy();
PubSub.subscribe("message", a);
PubSub.subscribe("event", b);

PubSub.publishSync("message", { id: 45 });
PubSub.publishSync("event", [1, 2, 3]);

assertTrue(a.calledBefore(b));
assertTrue(b.calledAfter(a));

});

264/296

Match execution counts: test a spy
was called a specific number of

times:

test("Should call a subscriber and check call counts", function () {
var message = getUniqueString();
var spy = this.spy();
PubSub.subscribe(message, spy);
PubSub.publishSync(message, "some payload");

// Passes if spy was called once and only once.
ok(spy.calledOnce); // calledTwice and calledThrice are also supported

// The number of recorded calls.
equal(spy.callCount, 1);

// Directly checking the arguments of the call
equals(spy.getCall(0).args[0], message);

});

265/296

Stubs and mocks

SinonJS also supports two other powerful
features which are useful to be aware of:
stubs and mocks. Both stubs and mocks
implement all of the features of the spy
API, but have some added functionality.

Stubs

A stub allows us to replace any existing
behaviour for a specific method with
something else. They can be very useful
for simulating exceptions and are most of-
ten used to write test cases when certain
dependencies of your code-base may not
yet be written.

Let us briefly re-explore our Backbone
Todo application, which contained a Todo
model and a TodoList collection. For the

266/296

purpose of this walkthrough, we want to
isolate our TodoList collection and fake
the Todo model to test how adding new
models might behave.

We can pretend that the models have yet
to be written just to demonstrate how
stubbing might be carried out. A shell col-
lection just containing a reference to the
model to be used might look like this:

var TodoList = Backbone.Collection.extend({
model: Todo

});

// Let's assume our instance of this collection is
this.todoList;
Assuming our collection is instantiating
new models itself, it's necessary for us to
stub the models constructor function for

267/296

the the test. This can be done by creating
a simple stub as follows:

this.todoStub = sinon.stub(window, "Todo");

The above creates a stub of the Todo
method on the window object. When
stubbing a persistent object, it's necessary
to restore it to its original state. This can
be done in a teardown() as follows:

this.todoStub.restore();
After this, we need to alter what the con-
structor returns, which can be efficiently
done using a plain Backbone.Model
constructor. Whilst this isn't a Todo mod-
el, it does still provide us an actual Back-
bone model.

teardown: function() {
this.todoStub = sinon.stub(window, "Todo");

268/296

this.model = new Backbone.Model({
id: 2,
title: "Hello world"

});
this.todoStub.returns(this.model);

});

The expectation here might be that this
snippet would ensure our TodoList collec-
tion always instantiates a stubbed Todo
model, but because a reference to the
model in the collection is already present,
we need to reset the model property of our
collection as follows:

this.todoList.model = Todo;

The result of this is that when our
TodoList collection instantiates new Todo
models, it will return our plain Backbone
model instance as desired. This allows us

269/296

to write a spec for testing the addition of
new model literals as follows:

module("Should function when instantiated with model literals", {

setup:function() {
this.todoStub = sinon.stub(window, "Todo");
this.model = new Backbone.Model({

id: 2,
title: "Hello world"

});

this.todoStub.returns(this.model);
this.todos = new TodoList();

// Let's reset the relationship to use a stub
this.todos.model = Todo;
this.todos.add({

id: 2,
title: "Hello world"

});

270/296

},

teardown: function() {
this.todoStub.restore();

}

});

test("should add a model", function() {
equal(this.todos.length, 1);

});

test("should find a model by id", function() {
equal(this.todos.get(5).get("id"), 5);

});
});

Mocks

Mocks are effectively the same as stubs,
however they mock a complete API out
and have some built-in expectations for

271/296

how they should be used. The difference
between a mock and a spy is that as the
expectations for their use are pre-defined,
it will fail if any of these are not met.

Here's a snippet with sample usage of a
mock based on PubSubJS. Here, we have
a clearTodo() method as a callback and
use mocks to verify its behavior.

test("should call all subscribers when exceptions", function () {
var myAPI = { clearTodo: function () {} };

var spy = this.spy();
var mock = this.mock(myAPI);
mock.expects("clearTodo").once().throws();

PubSub.subscribe("message", myAPI.clearTodo);
PubSub.subscribe("message", spy);
PubSub.publishSync("message", undefined);

mock.verify();

272/296

ok(spy.calledOnce);
});

273/296

Practical
We can now begin writing test specs for
our Todo application, which are listed and
separated by component (e.g Models, Col-
lections etc.). It's useful to pay attention
to the name of the test, the logic being
tested and most importantly the asser-
tions being made as this will give you
some insight into how what we've learned
can be applied to a complete application.

To get the most out of this section, I re-
commend looking at the QUnit Koans in-
cluded in the practicals\qunit-ko-
ans folder - this is a port of the Back-
bone.js Jasmine Koans over to QUnit that
I converted for this post.

In case you haven't had a chance to try
out one of the Koans kits as yet, they are

a set of unit tests using a specific testing
framework that both demonstrate how a
set of specs for an application may be
written, but also leave some tests unfilled
so that you can complete them as an
exercise.

Models

For our models we want to at minimum
test that:

• New instances can be created with
the expected default values

• Attributes can be set and retrieved
correctly

• Changes to state correctly fire off
custom events where needed

• Validation rules are correctly
enforced

275/296

module('About Backbone.Model');

test('Can be created with default values for its attributes.', function() {
expect(1);

var todo = new Todo();

equal(todo.get('text'), "");
});

test('Will set attributes on the model instance when created.', function() {
expect(3);

var todo = new Todo({ text: 'Get oil change for car.' });

equal(todo.get('text'), "Get oil change for car.");
equal(todo.get('done'), false);
equal(todo.get('order'), 0);

});

test('Will call a custom initialize function on the model instance when created.', function() {
expect(1);

276/296

var toot = new Todo({ text: 'Stop monkeys from throwing their own crap!' });
equal(toot.get('text'), 'Stop monkeys from throwing their own rainbows!');

});

test('Fires a custom event when the state changes.', function() {
expect(1);

var spy = this.spy();
var todo = new Todo();

todo.bind('change', spy);
// How would you update a property on the todo here?
// Hint: http://documentcloud.github.com/backbone/#Model-set
todo.set({ text: "new text" });

ok(spy.calledOnce, "A change event callback was correctly triggered");
});

test('Can contain custom validation rules, and will trigger an error event on failed validation.', function() {
expect(3);

277/296

var errorCallback = this.spy();
var todo = new Todo();

todo.bind('error', errorCallback);
// What would you need to set on the todo properties to cause validation to fail?
todo.set({ done: "not a boolean" });

ok(errorCallback.called, 'A failed validation correctly triggered an error');
notEqual(errorCallback.getCall(0), undefined);
equal(errorCallback.getCall(0).args[1], 'Todo.done must be a boolean value.');

});

Collections

For our collection we'll want to test that:

• New model instances can be ad-
ded as both objects and arrays

278/296

• Changes to models result in any
necessary custom events being
fired

• A url property for defining the
URL structure for models is cor-
rectly defined

module('About Backbone.Collection');

test('Can add Model instances as objects and arrays.', function() {
expect(3);

var todos = new TodoList();
equal(todos.length, 0);

todos.add({ text: 'Clean the kitchen' });
equal(todos.length, 1);

todos.add([
{ text: 'Do the laundry', done: true },
{ text: 'Go to the gym' }

]);

279/296

equal(todos.length, 3);
});

test('Can have a url property to define the basic url structure for all contained models.', function() {
expect(1);
var todos = new TodoList();
equal(todos.url, '/todos/');

});

test('Fires custom named events when the models change.', function() {
expect(2);

var todos = new TodoList();
var addModelCallback = this.spy();
var removeModelCallback = this.spy();
todos.bind('add', addModelCallback);
todos.bind('remove', removeModelCallback);

// How would you get the 'add' event to trigger?
todos.add({text:"New todo"});

280/296

ok(addModelCallback.called);

// How would you get the 'remove' callback to trigger?
todos.remove(todos.last());
ok(removeModelCallback.called);

});

Views

For our views we want to ensure:

• They are being correctly tied to a
DOM element when created

• They can render, after which the
DOM representation of the view
should be visible

• They support wiring up view
methods to DOM elements

281/296

One could also take this further and test
that user interactions with the view cor-
rectly result in any models that need to be
changed being updated correctly.

module('About Backbone.View', {
setup: function() {

$('body').append('<ul id="todoList">');
this.todoView = new TodoView({ model: new Todo() });

},
teardown: function() {

this.todoView.remove();
$('#todoList').remove();

}
});

test('Should be tied to a DOM element when created, based off the property provided.', function() {
expect(1);
equal(this.todoView.el.tagName.toLowerCase(), 'li');

});

test('Is backed by a model instance, which provides the data.', function() {

282/296

expect(2);
notEqual(this.todoView.model, undefined);
equal(this.todoView.model.get('done'), false);

});

test('Can render, after which the DOM representation of the view will be visible.', function() {
this.todoView.render();
// Hint: render() just builds the DOM representation of the view, but doesn't insert it into the DOM.
// How would you append it to the ul#todoList?
// How do you access the view's DOM representation?
//
// Hint: http://documentcloud.github.com/backbone/#View-el

$('ul#todoList').append(this.todoView.el);
equal($('#todoList').find('li').length, 1);

});

asyncTest('Can wire up view methods to DOM elements.', function() {
expect(2);
var viewElt;

283/296

$('#todoList').append(this.todoView.render().el);

setTimeout(function() {
viewElt = $('#todoList li input.check').filter(':first');

equal(viewElt.length > 0, true);
// Make sure that QUnit knows we can continue
start();

}, 1000, 'Expected DOM Elt to exist');

// Hint: How would you trigger the view, via a DOM Event, to toggle the 'done' status.
// (See todos.js line 70, where the events hash is defined.)
//
// Hint: http://api.jquery.com/click

$('#todoList li input.check').click();
expect(this.todoView.model.get('done'), true);

});

284/296

Events

For events, we may want to test a few dif-
ferent use cases:

• Extending plain objects to support
custom events

• Binding and triggering custom
events on objects

• Passing along arguments to call-
backs when events are triggered

• Binding a passed context to an
event callback

• Removing custom events

and a few others that will be detailed in
our module below:

module('About Backbone.Events', {
setup: function() {

this.obj = {};
_.extend(this.obj, Backbone.Events);

285/296

this.obj.unbind(); // remove all custom events before each spec is run.
}

});

test('Can extend JavaScript objects to support custom events.', function() {
expect(3);

var basicObject = {};

// How would you give basicObject these functions?
// Hint: http://documentcloud.github.com/backbone/#Events
_.extend(basicObject, Backbone.Events);

equal(typeof basicObject.bind, 'function');
equal(typeof basicObject.unbind, 'function');
equal(typeof basicObject.trigger, 'function');

});

test('Allows us to bind and trigger custom named events on an object.', function() {
expect(1);

var callback = this.spy();

286/296

this.obj.bind('basic event', callback);
this.obj.trigger('basic event');

// How would you cause the callback for this custom event to be called?
ok(callback.called);

});

test('Also passes along any arguments to the callback when an event is triggered.', function() {
expect(1);

var passedArgs = [];

this.obj.bind('some event', function() {
for (var i = 0; i < arguments.length; i++) {

passedArgs.push(arguments[i]);
}

});

this.obj.trigger('some event', 'arg1', 'arg2');

deepEqual(passedArgs, ['arg1', 'arg2']);

287/296

});

test('Can also bind the passed context to the event callback.', function() {
expect(1);

var foo = { color: 'blue' };
var changeColor = function() {

this.color = 'red';
};

// How would you get 'this.color' to refer to 'foo' in the changeColor function?
this.obj.bind('an event', changeColor, foo);
this.obj.trigger('an event');

equal(foo.color, 'red');
});

test("Uses 'all' as a special event name to capture all events bound to the object." , function() {
expect(2);

var callback = this.spy();

288/296

this.obj.bind('all', callback);
this.obj.trigger("custom event 1");
this.obj.trigger("custom event 2");

equal(callback.callCount, 2);
equal(callback.getCall(0).args[0], 'custom event 1');

});

test('Also can remove custom events from objects.', function() {
expect(5);

var spy1 = this.spy();
var spy2 = this.spy();
var spy3 = this.spy();
this.obj.bind('foo', spy1);
this.obj.bind('bar', spy1);
this.obj.bind('foo', spy2);
this.obj.bind('foo', spy3);

// How do you unbind just a single callback for the event?

289/296

this.obj.unbind('foo', spy1);
this.obj.trigger('foo');

ok(spy2.called);

// How do you unbind all callbacks tied to the event with a single method
this.obj.unbind('foo');
this.obj.trigger('foo');

ok(spy2.callCount, 1);
ok(spy2.calledOnce, "Spy 2 called once");
ok(spy3.calledOnce, "Spy 3 called once");

// How do you unbind all callbacks and events tied to the object with a single method?
this.obj.unbind('bar');
this.obj.trigger('bar');

equal(spy1.callCount, 0);
});

290/296

App

It can also be useful to write specs for any
application bootstrap you may have in
place. For the following module, our setup
initiates and appends a TodoApp view and
we can test anything from local instances
of views being correctly defined to applic-
ation interactions correctly resulting in
changes to instances of local collections.

module('About Backbone Applications' , {
setup: function() {

Backbone.localStorageDB = new Store('testTodos');
$('#qunit-fixture').append('<div id="app"></div>');
this.App = new TodoApp({ appendTo: $('#app') });

},

teardown: function() {
this.App.todos.reset();
$('#app').remove();

}

291/296

});

test('Should bootstrap the application by initializing the Collection.', function() {
expect(2);

notEqual(this.App.todos, undefined);
equal(this.App.todos.length, 0);

});

test('Should bind Collection events to View creation.' , function() {
$('#new-todo').val('Foo');
$('#new-todo').trigger(new $.Event('keypress', { keyCode: 13 }));

equal(this.App.todos.length, 1);
});

Further Reading &
Resources

That's it for this section on testing applic-
ations with QUnit and SinonJS. I

292/296

encourage you to try out the QUnit Back-
bone.js Koans and see if you can extend
some of the examples. For further reading
consider looking at some of the additional
resources below:

• Test-driven JavaScript Devel-
opment (book)

• SinonJS/QUnit Adapter
• SinonJS and QUnit
• Automating JavaScript Test-

ing With QUnit
• Ben Alman's Unit Testing

With QUnit
• Another QUnit/Backbone.js

demo project
• SinonJS helpers for

Backbone

293/296

https://github.com/addyosmani/backbone-koans-qunit
https://github.com/addyosmani/backbone-koans-qunit
http://tddjs.com/
http://tddjs.com/
http://sinonjs.org/qunit/
http://cjohansen.no/en/javascript/using_sinon_js_with_qunit
http://msdn.microsoft.com/en-us/scriptjunkie/gg749824
http://msdn.microsoft.com/en-us/scriptjunkie/gg749824
http://benalman.com/talks/unit-testing-qunit.html
http://benalman.com/talks/unit-testing-qunit.html
https://github.com/jc00ke/qunit-backbone
https://github.com/jc00ke/qunit-backbone
http://devblog.supportbee.com/2012/02/10/helpers-for-testing-backbone-js-apps-using-jasmine-and-sinon-js/
http://devblog.supportbee.com/2012/02/10/helpers-for-testing-backbone-js-apps-using-jasmine-and-sinon-js/

Resources

Whilst we get with Backbone out of the
box can be terribly useful, there are some
equally beneficial add-ons that can help
simplify our development process. These
include:

• Backbone Layout Manager
• Backbone Boilerplate
• Backbone Model Binding
• Backbone Relational - for model

relationships
• View and model inheritance
• Backbone Marionette
• Backbone CouchDB
• Backbone Validations - HTML5

inspired validations

In time, there will be tutorials in the book
covering some of these resources but until
then, please feel free to check them out.

294/296

https://github.com/tbranyen/backbone.layoutmanager
https://github.com/tbranyen/backbone-boilerplate
https://github.com/derickbailey/backbone.modelbinding
https://github.com/PaulUithol/Backbone-relational
https://github.com/PaulUithol/Backbone-relational
https://gist.github.com/1271041
https://github.com/derickbailey/backbone.marionette
https://github.com/janmonschke/backbone-couchdb
https://github.com/n-time/backbone.validations
https://github.com/n-time/backbone.validations

Conclusions

That's it for 'Developing Backbone.js Ap-
plications'. I hope you found this book
both useful, enlightening and a good start
for your journey into exploring Back-
bone.js.

Remember, If there are other topics or
areas of this book you feel could be expan-
ded further, please feel free to let me
know, or better yet, send a pull request
upstream. I'm always interested in mak-
ing this title as comprehensive as possible.

Until next time, the very best of luck with
the rest of your journey!

Copyright Addy Osmani, 2012.

295/296

@Created by PDF to ePub

http://www.pdf-epub-converter.com/?e2p-b

	
	MongoDB Ruby Driver
	Getting started

	Practical
	Installing The Prerequisites
	Ruby
	Ruby Gems
	Sinatra
	Haml
	MongoDB
	1.Data directories
	2.Running and connecting to your server

	MongoDB Ruby Driver

	Tutorial
	Application Files
	Backbone
	Views

	Collections
	Model
	Ruby/Sinatra
	app.rb
	Haml/Templates
	index.haml
	todo.haml

	Conclusions
	# Advanced
	Modular JavaScript
	Organizing modules with RequireJS and AMD
	Writing AMD modules with RequireJS
	Alternate syntax

	Keeping Your Templates External Using RequireJS And The Text Plugin
	Optimizing Backbone apps for production with the RequireJS Optimizer
	Practical: Building a modular Backbone app with AMD & RequireJS
	Overview
	Markup
	Configuration options
	Modularizing our models, views and collections

	Decoupling Backbone with the Mediator and Facade patterns
	Summary
	Practical

	Paginating Backbone.js Requests & Collections
	Paginator's pieces
	Downloads And Source Code
	Live Examples
	Paginator.requestPager
	1. Create a new Paginated collection
	2: Set the model and base URL for the collection as normal
	3. Map the attributes supported by your API (URL)
	4. Configure the default pagination, query and sort details for the paginator
	5. Finally, configure Collection.parse() and we're done
	Convenience methods:

	Paginator.clientPager
	1. Create a new paginated collection with a model and URL
	2. Map the attributes supported by your API (URL)
	3. Configure how to paginate data at a UI-level
	4. Configure the rest of the request parameter default values
	5. Finally, configure Collection.parse() and we're done
	Convenience methods:

	Views/Templates
	Backbone & jQuery Mobile
	Resolving the routing conflicts
	Practical: A Backbone, RequireJS/AMD app with jQuery Mobile
	Getting started
	jQuery Mobile: Going beyond mobile application development

	Unit Testing

	Unit Testing Backbone Applications With Jasmine
	Introduction
	Jasmine
	Suites, Specs & Spies
	beforeEach and afterEach()
	Shared scope
	Getting setup
	TDD With Backbone
	Models
	Collections
	Views
	Initial setup
	View rendering
	Rendering with a templating system
	Conclusions
	Exercise
	Further reading

	Unit Testing Backbone Applications With QUnit And SinonJS
	Introduction

	QUnit
	Getting Setup
	Sample HTML with QUnit-compatible markup:

	Assertions
	Basic test case using test(name, callback):
	Comparing the actual output of a function against the expected output:

	Adding structure to assertions
	Basic QUnit Modules:
	Using setup() and teardown() :
	Using setup() and teardown() for instantiation and clean-up:

	Assertion examples
	equal - a comparison assertion. It passes if actual == expected
	notEqual - a comparison assertion. It passes if actual != expected
	strictEqual - a comparison assertion. It passes if actual === expected.
	notStrictEqual - a comparison assertion. It passes if actual !== expected.
	deepEqual - a recursive comparison assertion. Unlike strictEqual(), it works on objects, arrays and primitives.
	notDeepEqual - a comparison assertion. This returns the opposite of deepEqual
	raises - an assertion which tests if a callback throws any exceptions

	Fixtures
	Fixture markup:
	Fixtures example:

	Asynchronous code

	SinonJS
	What is SinonJS?
	Basic Spies:
	Spying On Existing Functions:
	Matching arguments: test a spy was called with a specific set of arguments:
	Stricter argument matching: test a spy was called at least once with specific arguments and no others:
	Testing call order: testing if a spy was called before or after another spy:
	Match execution counts: test a spy was called a specific number of times:

	Stubs and mocks
	Stubs
	Mocks

	Practical
	Models
	Collections
	Views
	Events
	App
	Further Reading & Resources
	Resources
	Conclusions

